DOI QR코드

DOI QR Code

Melanin Bleaching and Melanogenesis Inhibition Effects of Pediococcus acidilactici PMC48 Isolated from Korean Perilla Leaf Kimchi

  • Kim, Sukyung (Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University) ;
  • Seo, Hoonhee (Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University) ;
  • Mahmud, Hafij Al (Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University) ;
  • Islam, Md Imtiazul (Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University) ;
  • Sultana, Omme Fatema (Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University) ;
  • Lee, Youngkyoung (Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University) ;
  • Kim, Minhee (Emory university, Institute for Quantitative Theory and Methods (QuanTM)) ;
  • Song, Ho-Yeon (Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University)
  • Received : 2020.03.06
  • Accepted : 2020.03.26
  • Published : 2020.07.28

Abstract

Overproduction and accumulation of melanin in the skin will darken the skin and cause skin disorders. So far, components that can inhibit tyrosinase, a melanin synthase of melanocytes, have been developed and used as ingredients of cosmetics or pharmaceutical products. However, most of existing substances can only inhibit the biosynthesis of melanin while melanin that is already synthesized and deposited is not directly decomposed. Thus, their effects in decreasing melanin concentration in the skin are weak. To overcome the limitation of existing therapeutic agents, we started to develop a substance that could directly biodegrade melanin. We screened traditional fermented food microorganisms for their abilities to direct biodegrade melanin. As a result, we found that a kimchi-derived Pediococcus acidilactici PMC48 had a direct melanin-degrading effect. This PMC48 strain is a new strain, different from P. acidilactici strains reported so far. It not only directly degrades melanin, but also has tyrosinase-inhibiting effect. It has a direct melanin-decomposition effect. It exceeds existing melanin synthesis-inhibiting technology. It is expected to be of high value as a raw material for melanin degradation drugs and cosmetics.

Keywords

References

  1. Sarangarajan R, Apte SP. 2006. The polymerization of melanin: a poorly understood phenomenon with egregious biological implications. Melanoma Res. 16: 3-10. https://doi.org/10.1097/01.cmr.0000195699.35143.df
  2. Riley PA. 1997. Melanin. Int. J. Biochem. Cell Biol. 29: 1235-1239. https://doi.org/10.1016/S1357-2725(97)00013-7
  3. Matts PJ, Dykes PJ, Marks R. 2007. The distribution of melanin in skin determined in vivo. Br. J. Dermatol. 156: 620-628. https://doi.org/10.1111/j.1365-2133.2006.07706.x
  4. Costin GE, Hearing VJ. 2007. Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J. 21: 976-994. https://doi.org/10.1096/fj.06-6649rev
  5. Brenner M, Hearing VJ. 2008. The protective role of melanin against UV damage in human skin. Photochem. Photobiol. 84: 539-549. https://doi.org/10.1111/j.1751-1097.2007.00226.x
  6. Ortonne JP, Passeron T. 2005. Melanin pigmentary disorders: treatment update. Dermatol. Clin. 23: 209-226. https://doi.org/10.1016/j.det.2005.01.001
  7. Gimenez Garcia RM, Carrasco Molina S. 2019. Drug-Induced hyperpigmentation: Review and case series. J. Am. Board Fam. Med. 32: 628-638. https://doi.org/10.3122/jabfm.2019.04.180212
  8. Rendon M, Berneburg M, Arellano I, Picardo M. 2006. Treatment of melasma. J. Am. Acad. Dermatol. 54: S272-281. https://doi.org/10.1016/j.jaad.2005.12.039
  9. Rendon MI. 2019. Hyperpigmentation disorders in hispanic population in the United States. J. Drugs Dermatol. 18: s112-114.
  10. Mohorcic M, Friedrich J, Renimel I, Andre P, Mandin D, Chaumont J-P. 2007. Production of melanin bleaching enzyme of fungal origin and its application in cosmetics. Biotechnol. Bioprocess Eng. 12: 200-206. https://doi.org/10.1007/BF02931093
  11. Kim BS, Blaghen M, Hong HS, Lee KM. 2016. Purification and characterization of a melanin biodegradation enzyme from Geotrichum sp. Int. J. Cosmet. Sci. 38: 622-626. https://doi.org/10.1111/ics.12337
  12. Luther JP, Lipke H. 1980. Degradation of melanin by Aspergillus fumigatus. Appl. Environ. Microbiol. 40: 145-155. https://doi.org/10.1128/AEM.40.1.145-155.1980
  13. Awong-Taylor J, Craven KS, Griffiths L, Bass C, Muscarella M. 2008. Comparison of biochemical and molecular methods for the identification of bacterial isolates associated with failed loggerhead sea turtle eggs. J. Appl. Microbiol. 104: 1244-1251. https://doi.org/10.1111/j.1365-2672.2007.03650.x
  14. Nguyen MH, Sigoillot JC. 1996. Isolation from coastal sea water and characterization of bacterial strains involved in non-ionic surfactant degradation. Biodegradation 7: 369-375. https://doi.org/10.1007/BF00056420
  15. Naz T, Khan MD, Ahmed I, Rehman SU, Rha ES, Malook I, et al. 2016. Biosorption of heavy metals by Pseudomonas species isolated from sugar industry. Toxicol. Ind. Health 32: 1619-1627. https://doi.org/10.1177/0748233715569900
  16. Janda JM, Abbott SL. 2007. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J. Clin. Microbiol. 45: 2761-2764. https://doi.org/10.1128/JCM.01228-07
  17. Kim M, Chun J. 2014. 16S rRNA Gene-Based Identification of Bacteria and Archaea using the EzTaxon Server, pp. 61-74. Ed.
  18. Tatusov RL, Galperin MY, Natale DA, Koonin EV. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28: 33-36. https://doi.org/10.1093/nar/28.1.33
  19. Lee I, Ouk Kim Y, Park SC, Chun J. 2016. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66: 1100-1103. https://doi.org/10.1099/ijsem.0.000760
  20. Aubin GG, Bemer P, Kambarev S, Patel NB, Lemenand O, Caillon J, et al. 2016. Propionibacterium namnetense sp. nov., isolated from a human bone infection. Int. J. Syst. Evol. Microbiol. 66: 3393-3399. https://doi.org/10.1099/ijsem.0.001204
  21. Muynarsk ESM, de Melo Pereira GV, Mesa D, Thomaz-Soccol V, Carvalho JC, Pagnoncelli MGB, et al. 2019. Draft genome sequence of pediococcus acidilactici strain LPBC161, isolated from mature coffee cherries during natural fermentation. Microbiol. Resour. Announc. 8: e00332-19.
  22. Park GS, Hong SJ, Jung BK, Park S, Jin H, Lee SJ, et al. 2017. Whole genome sequence of lactic acid bacterium Pediococcus acidilactici strain S1. Braz J. Microbiol. 48: 395-396. https://doi.org/10.1016/j.bjm.2016.09.019
  23. Barreau G, Tompkins TA, de Carvalho VG. 2012. Draft genome sequence of probiotic strain Pediococcus acidilactici MA18/5M. J. Bacteriol. 194: 901. https://doi.org/10.1128/JB.06563-11
  24. Park GS, Hong SJ, Park S, Jin H, Lee SJ, Shin JH, et al. 2017. Draft genome sequence of alcohol-tolerant bacteria Pediococcus acidilactici strain K3. Braz. J. Microbiol. 48: 1-2. https://doi.org/10.1016/j.bjm.2016.07.021
  25. Doi K, Mori K, Tashiro K, Fujino Y, Nagayoshi Y, Hayashi Y, et al. 2013. Draft Genome Sequence of Pediococcus lolii NGRI 0510Q(T) Isolated from Ryegrass Silage. Genome Announce. 1: e00156-12.
  26. Nihei K, Kubo I. 2003. Identification of oxidation product of arbutin in mushroom tyrosinase assay system. Bioorg. Med. Chem Lett. 13: 2409-2412. https://doi.org/10.1016/S0960-894X(03)00395-0
  27. Palumbo A, d'Ischia M, Misuraca G, Prota G. 1991. Mechanism of inhibition of melanogenesis by hydroquinone. Biochim. Biophys Acta 1073: 85-90. https://doi.org/10.1016/0304-4165(91)90186-K
  28. Wang Y, Hao MM, Sun Y, Wang LF, Wang H, Zhang YJ, et al. 2018. Synergistic promotion on tyrosinase inhibition by antioxidants. Molecules 23: 106. https://doi.org/10.3390/molecules23010106
  29. Bilodeau ML, Greulich JD, Hullinger RL, Bertolotto C, Ballotti R, Andrisani OM. 2001. BMP-2 stimulates tyrosinase gene expression and melanogenesis in differentiated melanocytes. Pigment Cell Res. 14: 328-336. https://doi.org/10.1034/j.1600-0749.2001.140504.x
  30. Tada H, Shiho O, Kuroshima K, Koyama M, Tsukamoto K. 1986. An improved colorimetric assay for interleukin 2. J. Immunol Method 93: 157-165. https://doi.org/10.1016/0022-1759(86)90183-3

Cited by

  1. Research progress on the inhibition of enzymes by polyoxometalates vol.7, pp.22, 2020, https://doi.org/10.1039/d0qi00860e
  2. The Biotechnological Potential of Pediococcus spp. Isolated from Kombucha Microbial Consortium vol.9, pp.12, 2020, https://doi.org/10.3390/foods9121780
  3. Biodegradation and Removal of PAHs by Bacillus velezensis Isolated from Fermented Food vol.31, pp.7, 2020, https://doi.org/10.4014/jmb.2104.04023