• Title/Summary/Keyword: Pavement slab

Search Result 160, Processing Time 0.026 seconds

Design Guide of Post-Tensioned Prestressed Concrete Pavement (포스트텐션 콘크리트 포장 공법 설계지침 개발)

  • Park, Hee-Beom;Kim, Seong-Min;Bae, Jong-Oh
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.17-18
    • /
    • 2010
  • This study was conducted to develop the design guide of PTCP (Post Tensioned Concrete Pavement). The behavior of PTCP was investigated by performing structural analyses and field experiments. Based on the results, the PTCP design guide was developed by determining the size of concrete slab, design environmental and vehicle loads, and amount and method of longitudinal and transverse tensioning.

  • PDF

Evaluation of Internally Cured Concrete Pavement Using Environmental Responses and Critical Stress Analysis

  • Kim, Kukjoo;Chun, Sanghyun
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.4
    • /
    • pp.463-473
    • /
    • 2015
  • Three full-scale instrumented test slabs were constructed and tested using a heavy vehicle simulator (HVS) to evaluate the structural behavior of internally cured concrete (ICC) for use in pavements under Florida condition. Three mix designs selected from a previous laboratory testing program include the standard mixture with 0.40 water-cement ratio, the ICC with 0.32 water-cement ratio, and the ICC mixture with 0.40 water-cement ratio. Concrete samples were prepared and laboratory tests were performed to measure strength, elastic modulus, coefficient of thermal expansion and shrinkage properties. The environmental responses were measured using strain gages, thermocouples, and linear variable differential transformers instrumented in full-scale concrete slabs. A 3-D finite element model was developed and calibrated using strain data measured from the full-scale tests using the HVS. The results indicate that the ICC slabs were less susceptible to the change of environmental conditions and appear to have better potential performance based on the critical stress analysis.

Temperature Effect on Pavement Types of Bimodal Tram Dedicated Lane (바이모달 트램 전용선로 포장 형태에 따른 온도의 영향)

  • Park, Young-Kon;Yoon, Hee-Taek;Mok, Jai-Kyun;Kim, Ryang-Gyun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.2107-2112
    • /
    • 2010
  • To analyze the effect of temperature on pavement types of dedicated lane, we have performed a temperature monitoring for pavements which were constructed in test track for Bimodal Tram. These pavements classified into four types; natural and artificial lawn, concrete and asphalt. Dedicated lane composed of natural and artificial lawn has a complex structure with concrete slab in contact surface of tires, and with 1m natural or artificial lawn in the middle part of lane. From monitoring results for pavements, dedicated lane with natural lawn shows lower temperature value compared with other dedicated lanes, and it is expected to decrease the heat island effect of conventional road if constructed.

  • PDF

Feasibility Study of Fiber Reinforced Concrete Using Waste Fishing Net (폐어망을 이용한 섬유보강 콘트리트의 적용성 연구)

  • Kweon, Gichul;Kim, Heeyun
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.87-93
    • /
    • 2014
  • PURPOSES : To evaluate the feasibility of cut waste fishing net as a reinforced fiber for concrete. METHODS : Strength characteristics of fiber reinforced concrete using waste fishing net were investigated. The cut waste fishing nets with 4~5cm length were putted into the soil-cement and cement concrete for pavement slab. RESULTS : Compression and tensile strength of fiber reinforced concrete using waste fishing net were increased. CONCLUSIONS : It was concluded that cut waste fishing net can be used as a reinforced fiber for cement concrete. However, sometimes using cut waste fishing net leads to decrease the strength; therefore, further researches are needed for real project.

Investigation of the Bond and Deformation Characteristics between an Asphalt layer and a Concrete Slab used as the Trackbed Foundation of an Embedded Rail System for Wireless Trams (무가선 트램용 매립형궤도 아스팔트 포장층의 부착특성 및 변형발생특성 분석)

  • Cho, Hojin;Kang, Yunsuk;Lee, Suhyung;Park, Jeabeom;Lim, Yujin
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.224-233
    • /
    • 2016
  • Embedded Railway Systems (ERS) will be adapted for wireless trams and will be constructed along city roadways. An asphalt layer should be overlaid on top of the concrete slab used as the trackbed structure in order to ensure smoothness and surface levels equal to those of existing road pavement in downtown city areas. However, the characteristics of an asphalt layer when used as overlay pavement for an ERS are complicated and the behavior of this material is not yet well defined and understood. Therefore, in this study, laboratory shear and tensile bond strength tests were conducted to investigate the bonding behavior of an asphalt layer in a multilayered trackbed section of an ERS. For the laboratory tests, a waterproof coating material was selected as a bonding material between the asphalt overlay and a concrete specimen. Valuable design parameters could be obtained based on the tensile and shear bond strength test results, providing information about the serviceability and durability of the overlaid pavements to be constructed alongside the ERS for wireless trams. In addition, a deformation analysis to assess the tensile strain generated due to truck axle loads at the interface between the asphalt layer and the concrete slab was conducted to verify the stability and performance of the asphalt layer.

Long-term Performance of Fiber Grid Reinforced Asphalt Pavements Overlaid on Old Concrete Pavements (노후 콘크리트포장 위에 덧씌운 섬유그리드 보강 아스팔트포장의 장기공용성)

  • Lee, Ju Myeong;Baek, Seung Beom;Lee, Kang Hoon;Kim, Jo Soon;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.19 no.3
    • /
    • pp.31-43
    • /
    • 2017
  • PURPOSES : The objective of this study is to verify the effect of fiber grid reinforcement on the long-term performance of asphalt pavement overlaid on old concrete pavement by performing field investigation, laboratory test, and finite element analysis. METHODS : The reflection cracking, roughness, and rutting of fiber grid reinforced overlay sections and ordinary overlay sections were compared. Cores were obtained from both the fiber grid reinforced and ordinary sections to measure bonding shear strength between the asphalt intermediate and asphalt overlay layers. Fracture energy, displacement after yield, shear stiffnesses of the cores were also obtained by analyzing the test results. Finite element analysis was performed using the test results to validate the effect of the fiber grid reinforcement on long-term performance of asphalt pavement overlaid on the old concrete pavement. The fatigue cracking and reflection-cracking were predicted for three cases: 1) fiber grid was not used; 2) glass fiber grid was used; 3) carbon fiber grid was used. RESULTS : The reflection-cracking ratio of fiber grid reinforced sections was much smaller than that of ordinary sections. The fiber grid reinforcement also showed reduction effect on rutting while that on roughness was not clear. The reflection-cracking was not affected by traffic volume but by slab deformation and joint movement caused by temperature variation. The bonding shear strength of the fiber grid reinforced sections was larger than that of the ordinary sections. The fracture energy, displacement after yield, and shear stiffnesses of the cores of the fiber grid reinforced sections were also larger than those of the ordinary sections. Finite element analysis results showed that fatigue cracking of glass or carbon fiber grid reinforced pavement was much smaller than that of ordinary pavement. Carbon fiber grid reinforcement showed larger effect in elongating the fatigue life of the ordinary overlay pavement compared to glass fiber grid reinforcement. The binder type of the overlay layer also affected the fatigue life. The fiber grid reinforcement resisted reflection-cracking and the carbon fiber grid showed the greater effect. CONCLUSIONS :The results of field investigation, laboratory test, and finite element analysis showed that the fiber grid reinforcement had a better effect on improving long-term performance of asphalt pavement overlaid on the old concrete pavement.

An Application of Simulation Method to Planning of Road Pavement Operation (시뮬레이션을 이용한 도로포장 공정계획의 수립방안)

  • Ohn, Seong-Won;Kim, Ok-Ki;Woo, Sung-Kwon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.8 no.1 s.35
    • /
    • pp.124-131
    • /
    • 2007
  • Project management means usually managing the rate of construction progress. But it also contains preparing scheme of execution and establishing plan for equipment, material, labor force to finish project within expected duration. In this paper to establish effective project planning a road pavement operation is selected as a case and simulation method is used for analyzing it. Next probability distributions are created after analyzing collected data and these are reflected in simulation model. Simulated result is compared with real project planning using models of lean concrete pavement process and concrete slab pavement process to verify efficiency of this model. In the event we know that project planning using simulation is more effective than one of the field in the aspects of duration and cost. Meanwhile simulated result in this paper has a limitation in accuracy because various constraints of filed are not reflected in it. However if we reflect this constraints in model through examining field in future this limitation is expected to be improved.

Initial Performance Evaluation of Fine-size Exposed Aggregate PCC Pavement by Experimental Construction (시험시공을 통한 소입경 골재노출 콘크리트포장의 초기 공용성 평가)

  • Kim, Young-Kyu;Choi, Don-Hwa;Lee, Seung-Woo;Kim, Hyung-Bae
    • International Journal of Highway Engineering
    • /
    • v.12 no.1
    • /
    • pp.87-98
    • /
    • 2010
  • Surface of fine-size exposed aggregate Portland cement concrete pavements is consists of exposed coarse aggregate by removing upper 2~3mm mortar of concrete slab. Fine-size exposed aggregate PCC pavements have advantages of maintaining low-noise and adequate skid-resistance level during the performance period. In order to provide the successful exposed concrete aggregate pavement, uniform distribution of the coarse aggregate on pavement surface through adequate the mix design and exposing method. In this study, evaluated initial performance of fine-size exposed aggregate PCC pavement by experimental construction. And it was known that fine-size exposed aggregate concrete pavement which can reduce the noise and maintain the adequate level of skid resistance and strength.

Estimation of Air Voids of Asphalt Concrete Using Non-destructive Density Testing (비파괴 밀도시험을 통한 아스팔트 콘크리트의 공극률 추정 연구)

  • Na, Il-ho;Lee, Sung-Jin;Yoon, Ji-Hyeon;Kim, Kwang-Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.6
    • /
    • pp.111-119
    • /
    • 2018
  • The air-void is known to be one of the influencing factors for estimating long-term performance of asphalt concrete. Most of all, confirming air void or density of pavement layer is important for quality control of field compaction level of asphalt concrete pavement. In this study, a non-nuclear type non-destructive density gage (NDDG) was used to estimate compacted air-voids of asphalt pavement as a non-destructive test method. Asphalt concrete slab specimens were prepared using 6 types of asphalt mixes in laboratory (lab) for lab NDDG test. Four different base structure materials were used to find out if there were any differences due to the type of base structure materials. The actual air-voids and NDDG air-voids were measured from 6 asphalt concrete slabs. Four sections of field asphalt pavements were tested using the NDDG, and actual air voids were also measured from field cores taken from the site where the NDDG air-void was measured. From lab and field experimental tests, it was found that the air-voids obtained by NDDG were not the same as the actual air-voids measured from the asphalt concrete specimen. However, it was possible to estimate air voids based on the relationship obtained from regression analysis between actual and NDDG air voids. The predicted air-voids based on the NDDG air-voids obtained from 50mm depth were found to be reliable levels with $R^2{\fallingdotseq}0.9$. Therefore, it was concluded that the air-voids obtained from NDDG could be used to estimate actual air-voids in the field asphalt pavement with a relatively high coefficient of determination.

A Study on the Variation of Temperature and the Deformation Characteristics in Asphaltic Concrete Pavement by Air Temperature (대기온도(大氣溫度)에 따른 아스팔트포장(鋪裝) 내부(內部) 온도변화(溫度變化)와 변형특성(變形特性)에 관(關)한 연구(硏究))

  • Kang, Min Soo;Kim, Soo Sam;Lee, Suk Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1115-1128
    • /
    • 1994
  • The condition of temperature gradients in asphaltic concrete (Ascon) pavement have been analyzed based on the data collected from 5 major sites in Korea. From this. considering heat transfer by insolation flux and air temperature within pavement slab. temperature variation on the surface of pavement was computed and numerical model using the theory of thermal conductivity was applied to estimate the temperature gradients in depth. To investigate the present condition of asphalt generally used in Korea. the asphalt property tests were applicated on 5 different AP-3 (AC 85~100), and AP-5 (AC 60~70) asphalts classified by penetration index. Uniaxial compression test and indirect tensile test were also carried out for varying temperature conditions to analyze the effect of temperature on the deformation characteristics of Ascon pavement by calculating the variation of static elastic modulus and layer coefficients.

  • PDF