Journal of Advanced Marine Engineering and Technology
/
v.38
no.10
/
pp.1297-1302
/
2014
This paper presents modern optimization methods for determining the optimal parameters of proportional-integral-derivative (PID) controller for coupled tank systems. The main objective is to obtain a fast and stable control system for coupled tank systems by tuning of the PID controller using the Particle Swarm Optimization algorithm. The result is compared in terms of system transient characteristics in time domain. The obtained results using the Particle Swarm Optimization algorithm are also compared to conventional PID tuning method like the Ziegler-Nichols tuning method, the Cohen-Coon method and IMC (Internal Model Control). The simulation results have been simulated by MATLAB and show that tuning the PID controller using the Particle Swarm Optimization (PSO) algorithm provides a fast and stable control system with low overshoot, fast rise time and settling time.
This paper proposes a Modified Particle Swarm Optimization with Time Varying Acceleration Coefficients (MPSO-TVAC) for solving economic load dispatch (ELD) problem. Due to prohibited operating zones (POZ) and ramp rate limits of the practical generators, the ELD problems become nonlinear and nonconvex optimization problem. Furthermore, the ELD problem may be more complicated if transmission losses are considered. Particle swarm optimization (PSO) is one of the famous heuristic methods for solving nonconvex problems. However, this method may suffer to trap at local minima especially for multimodal problem. To improve the solution quality and robustness of PSO algorithm, a new best neighbour particle called 'rbest' is proposed. The rbest provides extra information for each particle that is randomly selected from other best particles in order to diversify the movement of particle and avoid premature convergence. The effectiveness of MPSO-TVAC algorithm is tested on different power systems with POZ, ramp-rate limits and transmission loss constraints. To validate the performances of the proposed algorithm, comparative studies have been carried out in terms of convergence characteristic, solution quality, computation time and robustness. Simulation results found that the proposed MPSO-TVAC algorithm has good solution quality and more robust than other methods reported in previous work.
본 논문에서는 particle swarm optimization(PSO)를 통한 비선형시스템의 퍼지집합 퍼지모델의 최적화 방법을 제안한다. 퍼지 모델링에서 전반부 동정, 즉 구조 동정 및 파라미터 동정은 비선형 시스템을 표현하는데 있어서 매우 중요하다. 퍼지모델의 전반부 동정에 있어 최적화 과정이 필요하며 유전자 알고리즘(Genetic Algorithm; GA)을 이용하여 퍼지모델을 최적화한 연구가 많이 있다. 본 연구는 파라미터 동정 시 최근 여러 가지 어려운 최적화 문제를 수행함에 있어서 성능의 우수성이 증명된 PSO를 이용하여 퍼지집합 퍼지모델의 전반부 파라미터를 동정하였다. 구조동정은 단순 유전자 알고리즘(Simple Genetic Algorithm; SGA)을 이용하여 동정하였으며 파라미터 동정시 실수 코딩유전자 알고리즘(Real Coded Genetic Algorithm; RCGA)와 PSO를 각각 파라미터 동정에 이용하여 성능을 비교하였다.
With the success of the digital economy and the rapid development of its technology, network security has received increasing attention. Intrusion detection technology has always been a focus and hotspot of research. A hybrid model that combines particle swarm optimization (PSO) and kernel extreme learning machine (KELM) is presented in this work. Continuous-valued PSO and binary PSO (BPSO) are adopted together to determine the parameter combination and the feature subset. A fitness function based on the detection rate and the number of selected features is proposed. The results show that the method can simultaneously determine the parameter values and select features. Furthermore, competitive or better accuracy can be obtained using approximately one quarter of the raw input features. Experiments proved that our method is slightly better than the genetic algorithm-based KELM model.
The paper presents controller optimization algorithm for a 12-pulse voltage source converter (VSC) based high voltage direct current (HVDC) system. To get an optimum algorithm, three methods namely conventional-Zeigler-Nichols, linear-golden section search (GSS) and stochastic-particle swarm optimization (PSO) are applied to control of 12 pulse VSC based HVDC system and simulation results are presented to show the best among the three. The performance results are obtained under various dynamic conditions such as load perturbation, non-linear load condition, and voltage sag, tapped load fault at points-of-common coupling (PCC) and single-line-to ground (SLG) fault at input AC mains. The conventional GSS and PSO algorithm are modified to enhance their performances under dynamic conditions. The results of this study show that modified particle swarm optimization provides the best results in terms of quick response to the dynamic conditions as compared to other optimization methods.
Journal of the Korean Society of Industry Convergence
/
v.19
no.4
/
pp.167-175
/
2016
We present a method for improving adaptability of Learning from Demonstration (LfD) strategy by combining the LfD and Particle Swarm Optimization (PSO). A trajectory generated from an LfD is modified with PSO by minimizing a fitness function that considers constraints. Finally, the final trajectory is suitable for a task and adapted for constraints. The effectiveness of the method is shown with a target reaching task with a manipulator in three-dimensional space.
An efficient methodology using static test data and changes in natural frequencies is proposed to identify the damages in structural systems. The methodology consists of two main stages. In the first stage, the Damage Signal Match (DSM) technique is employed to quickly identify the most potentially damaged elements so as to reduce the number of the solution space (solution parameters). In the second stage, a particle swarm optimization (PSO) approach is presented to accurately determine the actual damage extents using the first stage results. One numerical case study by using a planar truss and one experimental case study by using a full-scale steel truss structure are used to verify the proposed hybrid method. The identification results show that the proposed methodology can identify the location and severity of damage with a reasonable level of accuracy, even when practical considerations limit the number of measurements to only a few for a complex structure.
Proceedings of the Korean Information Science Society Conference
/
2007.10c
/
pp.367-370
/
2007
In this paper, we concentrate on the mask design problem for optical micro-lithography. The pre-distorted mask is obtained by minimizing the error between the designed output image and the projected output image. We use the particle swarm optimization(PSO) and fuzzy system to insure that the resulting images are identical to the desired image. Our method has good performance for the iteration number by an experiment.
Journal of information and communication convergence engineering
/
v.22
no.2
/
pp.127-132
/
2024
Haptic actuators for large display panels play an important role in bridging the gap between the digital and physical world by generating interactive feedback for users. However, the generation of meaningful haptic feedback is challenging for large display panels. There are dead zones with low haptic sensations when a small number of actuators are applied. In contrast, it is important to control the traveling wave generated by the actuators in the presence of multiple actuators. In this study, we propose a particle swarm optimization (PSO)-based algorithm for the haptic localization of plates with electrostatic vibration actuators. We modeled the transverse displacement of a plate under the effect of actuators by employing the Kirchhoff-Love plate theory. In addition, starting with twenty randomly generated particles containing the actuator parameters, we searched for the optimal actuator parameters using a stochastic process to yield localization. The capability of the proposed PSO algorithm is reported and the transverse displacement has a high magnitude only in the targeted region.
Jati, Grafika;Gunawan, Alexander Agung Santoso;Jatmiko, Wisnu
ETRI Journal
/
v.42
no.1
/
pp.54-66
/
2020
Nowadays, the broad availability of cameras and embedded systems makes the application of computer vision very promising as a supporting technology for intelligent transportation systems, particularly in the field of vehicle tracking. Although there are several existing trackers, the limitation of using low-cost cameras, besides the relatively low processing power in embedded systems, makes most of these trackers useless. For the tracker to work under those conditions, the video frame rate must be reduced to decrease the burden on computation. However, doing this will make the vehicle seem to move faster on the observer's side. This phenomenon is called the fast motion challenge. This paper proposes a tracker called dynamic swarm particle (DSP), which solves the challenge. The term particle refers to the particle filter, while the term swarm refers to particle swarm optimization (PSO). The fundamental concept of our method is to exploit the continuity of vehicle dynamic motions by creating dynamic models based on PSO. Based on the experiments, DSP achieves a precision of 0.896 and success rate of 0.755. These results are better than those obtained by several other benchmark trackers.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.