
54  |  	﻿� ETRI Journal. 2020;42(1):54–66.wileyonlinelibrary.com/journal/etrij

1  |   INTRODUCTION

An intelligent transportation system (ITS) is an application
of information technology in the transportation system to
improve safety and mobility [1]. ITS implementation needs
supporting technologies, which can be divided into two
categories: infrastructure‐side technology and vehicle‐side
technology. In light of the availability of low‐cost cameras
and embedded systems, we would like to exploit these de-
vices for implementing the supporting technologies based on
computer vision [2]. Therefore, the grand objective of our
research is to develop an automatic vehicle tracking system
by using low‐cost cameras to acquire the traffic data and em-
bedded systems to process the data.

Tracking using a low‐cost camera and an embedded sys-
tem has received considerable research attention due to its
wide applications in Internet of Things (IoT). Nevertheless,

there are two main challenges of visual object tracking in IoT
applications: 1) the low‐cost camera may only produce low‐
frame‐rate videos with low resolution [3] and 2) the limited
storage and processing power of an embedded system can
only process low‐frame‐rate videos. Based on the literature
[4], low‐cost cameras can produce 1 GB to 10 GB of data
in a single day. Even though there are many existing track-
ing methods, the previously mentioned limitations can make
most of these tracking methods useless in ITS implementa-
tion. A common solution is to reduce the video frame rate
to decrease the computational burden of performing object
tracking. However, this solution will cause the movement of
the target objects seem faster on the observer's side. Hence,
we need to modify the tracking method to solve the chal-
lenges in fast motion.

In this study, we formulate our main concern as develop-
ing a tracking method to handle the fast motion challenges.

Received: 13 August 2018  |  Revised: 7 January 2019  |  Accepted: 13 February 2019

DOI: 10.4218/etrij.2018-0435

O R I G I N A L A R T I C L E

Dynamic swarm particle for fast motion vehicle tracking

Grafika Jati1  | Alexander Agung Santoso Gunawan2  | Wisnu Jatmiko1

This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition + Change
Prohibition (http://www.kogl.or.kr/info/licen​seTyp​eEn.do).
1225-6463/$ © 2019 ETRI

1Faculty of Computer Science, Universitas
Indonesia, Depok, Indonesia
2School of Computer Science, Bina
Nusantara University, Jakarta, Indonesia

Correspondence
Wisnu Jatmiko, Faculty of Computer
Science, Universitas Indonesia,
Depok, Indonesia.
Email: wisnuj@cs.ui.ac.id

Nowadays, the broad availability of cameras and embedded systems makes the appli-
cation of computer vision very promising as a supporting technology for intelligent
transportation systems, particularly in the field of vehicle tracking. Although there
are several existing trackers, the limitation of using low‐cost cameras, besides the
relatively low processing power in embedded systems, makes most of these trackers
useless. For the tracker to work under those conditions, the video frame rate must be
reduced to decrease the burden on computation. However, doing this will make the
vehicle seem to move faster on the observer's side. This phenomenon is called the
fast motion challenge. This paper proposes a tracker called dynamic swarm parti-
cle (DSP), which solves the challenge. The term particle refers to the particle filter,
while the term swarm refers to particle swarm optimization (PSO). The fundamental
concept of our method is to exploit the continuity of vehicle dynamic motions by
creating dynamic models based on PSO. Based on the experiments, DSP achieves
a precision of 0.896 and success rate of 0.755. These results are better than those
obtained by several other benchmark trackers.

K E Y W O R D S
dynamic model, fast motion, particle filter, particle swarm optimization, vehicle tracking

www.wileyonlinelibrary.com/journal/etrij
mailto:﻿
http://www.kogl.or.kr/info/licenseTypeEn.do
mailto:wisnuj@cs.ui.ac.id

     |  55JATI et al.

Wu et al [5] defined the fast motion challenge as the mo-
tion of an object that is larger than 20 pixels. We use this
definition as the base standard in our experiments, and then
experiment with larger threshold values. We also exploit the
fact that the video frame rate is related to the speed of the
tracked object [6]. Therefore, to analyze the performance of
the tracker, we first speed up the video frame rate by ma-
nipulating the stride of a certain video sequence. Then, we
evaluate the tracker performance to track the targeted object
in the manipulated video sequence. We also calculate how
many pixels the object target moves in the manipulated video
sequence as a comparison to the base standard.

The backbone of the tracking algorithm is the observation
model and the transition model [7]. The fast motion chal-
lenge is more related to the transition model, which tries to
capture the dynamic motion of the targeted object. However,
much of the research in visual object tracking has focused on
the observation model of the targeted object. Consequently,
the fast motion challenge has been much less investigated.
Del Bimbo and Dini [8] integrated the first‐order dynamic
model in a particle filter (PF)‐based tracker. Guo et al [9]
used a modification of the PF, which is inspired by an insect's
vision, to increase the accuracy of motion estimation. They
successfully developed a more adaptive transition model to
predict object movements more accurately by modeling the
light distribution of a moving image.

For diagnosing the strengths and weaknesses of visual
trackers, Wang et al [7] decomposed a tracker into the follow-
ing five main parts: transition model, feature extractor, obser-
vation model, model updater, and ensemble post‐processor.
They found that setting the parameters in the transition model
properly is crucial to achieving a good performance in the
fast motion challenge.

In contrast, the transition model has a close relation with the
occlusion challenge. Gunawan and Wasito [10] proposed a non-
retinotopic PF algorithm to overcome the occlusion challenge.
This algorithm monitors the reliability level of the previous ob-
ject tracking. When the quality level of tracking reliability falls
below a certain threshold, the algorithm will modify its mo-
tion dynamics. Related to the occlusion in vehicle movement,
Yildirim et al [11] modified the PF using information of vehicle
angles for assigning weights to the particle. Particles moving in
the direction of the vehicle will receive a higher weight.

To solve the fast motion challenge, we propose a track-
ing method called, dynamic swarm particle (DSP), where the
term “particle” is related to the PF in a Monte Carlo simula-
tion [12], a framework that can effectively solve the nonlinear
dynamics and non‐Gaussian distribution problems in visual
object tracking. Meanwhile, the term “swarm” refers to the
particle swarm optimization (PSO) algorithm [13], which
seeks the optimal candidate solution heuristically. To design
a tracking system for overcoming the fast motion challenges,
we employ our previous results [14] as an observation model

to handle the changes in the object's appearance. This obser-
vation model is based on the state‐of‐the‐art object recogni-
tion task using deep learning techniques, which can learn the
changes in the object's appearance automatically. The funda-
mental concept of our method is to exploit the continuity of
vehicle dynamic motions by creating dynamic models based
on PSO. In this paper, we focus on manipulating the transi-
tion model based on the continuity of motions.

The rest of this paper is organized as follows. Section 2
describes the visual object tracking terminology in the tran-
sition model and the observation model. It also explains the
conventional PF and PSO methods. In Section 3, the pro-
posed method, DSP, will be explained. Section 4 depicts the
experiment setup. Finally, Section 5 discusses the results of
the proposed method as compared to the existing methods,
and section 6 presents our conclusion.

2  |   RELATED WORK

2.1  |  Visual object tracking
Object tracking is a process that estimates the state variable
xt based on a set of observations z1:t−1 in a discrete time t. In
the general framework, object tracking comprises the follow-
ing four parts: the input frame; the search mechanism, which
includes the transition and observation models; and the final
prediction [7].

1.	 Input Frame: In the first frame, the target is appointed
first. Alternatively, the target can be obtained by ob-
ject detection. In this study, the initialization process is
conducted by providing a bounding box on the tracked
object. Furthermore, the object will be represented as
a state variable in a transformation space.

2.	 Search Mechanism: One of the most important compo-
nents of object tracking is search mechanism, which esti-
mates the object's location. Two approaches can be used
as the search mechanisms: deterministic and stochastic ap-
proaches. The deterministic approach considers the object
tracking problem as an optimization problem, which can
be solved using the gradient descent or optimization algo-
rithms. In contrast, the stochastic approach is more widely
used for object tracking. This method utilizes Bayesian
frameworks such as PF and Markov chain Monte Carlo
[5]. Furthermore, the search mechanism consists of two
parts:
•	 Transition Model: This model represents movements

among the state variables in a certain space [12].
•	 Observation Model: This model aims to describe the

target object, and begins by selecting the features that
can distinguish objects. Afterward, the object model is
built based on feature selection [15]. Several previous
studies have used various observation models such as

56  |     JATI et al.

the raw grayscale, raw color, haar‐like feature, HOG, and
HOG plus raw color. Recently, Kang et al [16] proposed
selected invariant feature as the observation model. A
survey conducted by Wang et al [7] showed that more
complex feature extraction methods produce more ac-
curate tracking. The rapid development of the deep
learning algorithm has reached state‐of‐the‐art level in
feature extraction. Therefore, several previous studies
have utilized deep learning in developing object tracking
algorithms, such as Wang and Yeung [17], Gunawan and
Jatmiko [18], Zhang et al [19], and Ma et al, [20].

3.	 Final Prediction The result of object tracking is a predicted
bounding box of objects on the nth frame.

2.2  |  Particle filter
A PF is widely used as a transition model. Wang et al [7]
compared the PF with other transition models such as sliding
windows and radius sliding windows, and found that the PF
obtained the highest precision because it maintains a probabil-
istic estimate on each frame. Each frame can find several target
object candidates. PFs can keep candidates so that the tracker
can regain the object when the tracking fails. Additionally,
PFs can accommodate the transformation of the target object,
such as scale, aspect ratio, rotation, and skewness.

A PF uses a set of weighted particles to estimate the pos-
terior distribution. This approach is utilized to estimate the
nonlinear and non‐Gaussian distributions in Bayesian estima-
tion. A PF is the most common formulation of the sequential
importance sampling method. For details on the PF, please
refer to [12].

Based on the previous research, a PF gives a poor result
while tracking fast motion objects. It achieves a success plot
and a precision of 0.458 and 0.623, respectively, which is
worse than the precision obtained by the sliding window and
radius sliding windows [7]. A traditional PF uses random
Gaussian for spreading particles. If some objects have similar
appearance, the particles will be easily trapped in the local
optima. Furthermore, particle degeneration will occur as a
consequence of eliminating the low‐weighted particles due
to a less‐precise proposal distribution. This leads to track-
ing loss. Particle degeneration is solved using the resampling
procedure. However, if the tracker loses diversity among the

particles, then the tracker fails to catch the dynamic move-
ment of the target.

2.3  |  Particle swarm optimization
Particle swarm optimization is used to optimize a solution
by seeking the optimal value developed by Kennedy [13]. It
utilizes a population of particles with a metaheuristic proce-
dure to search for an optimum value by trial and error. This
procedure has a trade‐off in randomness and local search.
There is no guarantee that the PSO will be able to obtain the
best solution. In addition, the solution is dependent on the
searching time. PSO comprises two phases: exploration and
exploitation. In the exploration phase, particles are spread so
that they can explore the search space. This phase reduces
the risk of particles to be trapped at the local optimum,
which however results in a slower convergence rate. In the
exploitation phase, particles are spread only in a local area
that finds the best solution at that time. This phase aims to
obtain the optimal solution to achieve a higher convergence
rate with the risk of being trapped in the local optimum. This
causes the solution to be dependent on the starting point.

There are several tracking methods that are used in com-
bination with the Bayesian framework with optimization.
Guo et al [9] put particles into an area with the highest
posterior value, and did not distribute them in the sam-
pling‐importance resampling area, such as the standard
PF. Xiaowei et al [21] performed a self‐adaptive crossover
and mutation to produce new particles in large quantities.
Walia and Kapoor [22] proposed methods of evolutionary
PF using cuckoo search to overcome the problem of de-
creasing particles in the standard PF. The research claimed
to be more reliable and efficient in addressing the issue of
scaling and rotational errors compared to the standard PF
and PF with PSO.

3  |   DSP TRACKER

This paper proposes a new tracking method, called DSP. We
proposed a dynamic model using the velocity of the target
object, so it brings out the term “dynamic.” DSP is shown in
Figure 1. DSP is a free model‐based and short‐term tracker

F I G U R E 1   Proposed method,
dynamic swarm particle

Feature extraction
& classifier
stacked

denoising auto
encoder

Motion dynamics
dynamics swarm

Input frame Transition
model

Observation
model Final prediction

     |  57JATI et al.

that processes a sequence of frames. The object target is de-
termined in the first frame. Afterward, the tracker depends
on that frame. DSP also does not redetect while losing the
object.

3.1  |  Affine parameter as a particle
representation
In visual object tracking, the target object can encounter sev-
eral transformations in the image frame, such as scaling, rota-
tion, reflection, shearing, and translation. According to [23],
the affine representation can track the object's shape more pre-
cisely compared to the representation by vector position. By
using affine representation, we can recognize the changes in
objects in an image frame, as illustrated in Figure 2, where the
black car is the initial shape of the target object and the blue
or green parts are the possibility of the object's transformation
due to its movement. Therefore, we use 2D affine groups as the
target object representation to anticipate these transformations.

For our proposed algorithm, DSP, we utilize affine rep-
resentation based on Lie group Aff(2), which is similar to
our previous research [18], where this approach was called
the geometric transformation method. For the affine trans-
formation class, geometric transformation can be visual-
ized in six modes, as seen in Figure 2. In vehicle tracking,
the perceived vehicle movements depend on the direction
of the vehicle to the camera's angle of view. When a vehicle
moves away or closer to the camera, it appears to be smaller
or larger, respectively. These changes can be represented
using similarity transformation, which is mode E1, as seen
in Figure 2. When a vehicle translates on the x or y‐axis, it
will change its position in the image frame. These x and y
translations can be represented as modes E5 and E6, respec-
tively. These modes are important to be anticipated in the
fast motion challenge. If there is a change in the camera's

viewpoint, the perceived vehicle in the image frame can be
deformed. This deformation can be represented by modes
E2 and E4, as seen in Figure 2. If there is an unusual vehicle
motion that involves rotation, which might occur when the
vehicle slips or crashes, it can be represented using mode
E3. All six modes seen in Figure 2 will create the general
affine transformation.

3.2  |  Proposed transition model
As stated in the Introduction, we would propose a tracking
method to deal with the fast motion challenge. The main
idea is to manipulate the transition model by exploiting the
continuity of vehicle dynamic motions and integrating it into
the PSO algorithm. Physical phenomena such as vehicle traf-
fic can be modeled if we can assume that it is a continuum,
meaning that the phenomenon is distributed continuously
and can be divided into infinitesimal parts with uniform
properties. According to [24], the movement of cars can be
effectively modeled as a continuum. One of the model that
is very effective is the cellular automaton model [25,26],
which uses discrete variables to represent the traffic dynami-
cal system. In this approach, the road is divided into road
part length Δx and the time is discretized into Δt. In addition,
the vehicle dynamics are modeled in the iterative form as
follows: xt+1 = xt + vΔt + ɛ. v is the velocity of the system,
which needs to be defined further, and ɛ is a random error.

By using the above insight, we integrate the velocity con-
cept in our state representation and our geometric model. In
the geometric approach, a curve space‐like Lie group can be
transformed accurately to a linear‐space‐like Lie algebra.
The fundamental idea is that all interactions related to the
movement parameters are manipulated in the Lie algebra.
Therefore, they can be controlled easily. The end calcula-
tion is then transformed back to the Lie group. By using this

F I G U R E 2   Affine mode
transformation for car

E1
E2 E3

E4 E5
E6

58  |     JATI et al.

approach, we can create a movement dynamic model more
precisely. In addition, it is easier to control their parameters.
Note that the detail of the derivation of the geometric ap-
proach can be seen in [18]. Suppose Xt ∊ Aff(2) is the state
variable that is analog to position xt in the model below. The
velocity in our representation can be defined as shown in (1):

Because the state representation is located in the Lie group
and the model is in the vector representation, or Lie alge-
bra, we have to make a transformation between these two
spaces using the relation observed in Figure 3. First, we
transform V to the Lie algebra space, with α as a tuned
parameter, as shown in (2):

The random error ɛ can be modeled in the Lie algebra space
as a linear combination of six modes, as shown in Figure 2
and expressed as follows:

Finally, the updated model can be expressed as follows:

This formula has already been implemented in our previ-
ous research [18] as the transition model of the visual object
tracking algorithm.

In the proposed method, we further utilize the continuity
of vehicle dynamics by using the PSO algorithm to catch
the fast motion. In Figures 4‒9, we illustrate the proposed
method. To manipulate the particle filter using PSO, we
work on a linear space, Lie algebra, and assume that each
particle is a PSO particle. Furthermore, we use confidence
probability to measure the fitness function of PSO. The con-
fidence level is determined using the observation model in

(1)V =X−1
t−1

×Xt.

(2)A
t
=�log(X−1

t−1
×X

t
).

(3)dWt =

6
∑

i=1

�t,iEi.

(4)Xt+1 =Xt ×exp (AtΔt+dWt).

F I G U R E 3   Relation of Lie algebra and Lie group

0 X2

Xn

X1

Lie group

Lie algebra

X1

X

Xn

X2

X–1X1

X–1X2

X–1Xn

e
exp(x)

Log(X)

F I G U R E 4   Dynamic swarm particle illustration: step 1 (top to
bottom)

The 3rd frame in particle filter

: Current state

 : Target state

: Previous state

: Particle

F I G U R E 5   Dynamic swarm particle illustration: step 2 (top to
bottom)

The 3rd frame in particle swarm: initialization

: Current state

 : Target state

: Previous state

: Particle

: Global best

F I G U R E 6   Dynamic swarm particle illustration: step 3 (top to
bottom)

The 3rd frame in particle swarm: initialization

: Current state

 : Target state

: Previous state

: Particle

: Global best

Shifted by

F I G U R E 7   Dynamic swarm particle illustration: step 4 (top to
bottom)

The 3rd frame in particle swarm: initialization

: Current state

 : Target state

: Previous state

: Particle

: Global best

Shifted by

     |  59JATI et al.

the range of 0.0 to 1.0. The larger the value of confidence
probability, the more precise is the tracking result. Details of
the observation model will be explained in the next section.

The last position of the PF phase in Figure 4 will be the
initial position of our PSO particle. In Figure 4, the green
particles denote the previous state; the blue particles denote
the current state; and the yellow particles denote the target
state. However, in reality, we do not know where the target
state is, but we can calculate the confidence probability to
indicate it. Initially, to use the PSO paradigm, we compute
the state velocity At and shift each particle based on it. The
shifting can be seen in Figure 5. After this shifting, we can
calculate the local best particles by comparing the confi-
dence probability before and after the shifting, as illustrated
in Figure 6. After the shifting, we also compute the global
best particle by comparing the best confidence probability
among the current state particles, as seen in Figure 7. Next,
we use the information of the local and global best particles
to modify our version of the geometric PSO algorithm:

where Vn+1
i

 is the ith particle velocity on the n + 1 iteration; Vn
i

is the ith particle velocity on the n iteration; Xn
i
 is the ith parti-

cle position on the n iteration; Xn+1
i

 is the ith particle position
on the n + 1 iteration; K is the constriction factor with value
between 0 and 1; c1 is the cognitive factor that influences
particle exploitation; c2 is the social factor that influences
particle exploration; Xpn

i
 is the ith particle's local best posi-

tion on the n iteration; Xn
g
 is the particle's global best position

on the n iteration; exp(A) is the exponential operation of
Matrix A for transforming to Lie group; log m(B) is the
exponential operation of Matrix B for transforming to Lie
algebra.

In addition, ɛ1 and ɛ2 are two random numbers with values
between 0 and 1. The parameters c1 and c2 are set around
2.05, which is to ensure swarm convergence [27]. We choose
the same c1 and c2 to create a balance between exploration
and exploitation. Furthermore, the two parameters produce a
constriction factor K, which has a value of 0.8. All parameters
factored in (5) are set constantly for each dataset.

As a result, the velocity and position of the particles are up-
dated based on (5) and (6), respectively. In our experiment, we
set the stopping criteria when the confidence probability reaches
0.8. If the particle has not reached this value, it will update the
position using the velocity. This searching process is shown in
Figure 8. Finally, the PSO iteration will stop when the global
best particle is really close to the target, as shown in Figure 9.

3.3  |  Observation model
The observation model aims to create a representation for de-
scribing the object that we are tracking. An important part of
the observation model is the feature extractor, which extracts
the characteristics of a raw image into a more informative
representation. The observation model is our fitness function
that calculates the confidence of each particle based on the
representation and produces p(zt|xt). The confidence of each
particle will determine the particle's best position Xpn

i
 and

global best position Xn
g
, as shown in (5).

We utilize a deep learning method, called stacked de-
noising auto encoder [17], with image data from Torralba
[28]. This approach has created a good image representation,
especially for visual object tracking, which can be learned
automatically. In this research, we adopt our version of the
approach from our previous research [14,18] by adding the
extreme learning machine layer to enhance the speed of the
observation model (Figure 10).

4  |   EXPERIMENT SETUP

4.1  |  Data
Based on the object tracking benchmark [5], if an object
moves more than 20 pixels (τ = 20), then the object motion is

(5)
Vn+1

i
=K×Vn

i
×exp

(

c1×�1× log m
(

Xpn
i
× (Xn

i
)−1

)

+ c2×�2× log m

(

Xn
g
(t)× (Xn

i
)−1

))

,

(6)Xn+1
i

=Xn
i
+Vn+1

i
,

F I G U R E 9   Dynamic swarm particle illustration: step 6 (top to
bottom)

Shifted by Convergence

The 3rd frame in particle swarm: iteration

: Current state

 : Target state

: Previous state

: Particle

: Global best

F I G U R E 8   Dynamic swarm particle illustration: step 5 (top to
bottom)

Shifted by

The 3rd frame in particle swarm: iteration

: Current state

 : Target state

: Previous state

: Particle

: Global best

60  |     JATI et al.

classified as fast motion. This study uses a vehicle sequence
that contains fast motion and low occlusion objects in a high-
way traffic. We test our method using several selected vehicle
datasets, namely car1 and car2, from OTB100 [29] and racing
and tunnel from VOT2016/2018 [30]. We also use other high-
way data, namely car003, motorcycle001, and motorcycle002.
The target object is taken from the static and dynamic cameras
from various viewpoints. Some vehicles are tracked from the
front‐side view, while others are tracked from the rear‐side
view and bird's‐eye view. These will create different size
changes, where the object will become either larger or smaller.

To evaluate the robustness of DSP, we also create an arti-
ficial sequence by eliminating some frames (every two, three,
or four frames). The eliminating procedure simulates the fast
motion‐based technique developed by Roy and Yusuke Inoue
[31]. The sequence is divided into three levels of fast motion,
as follows:

1.	 Standard, if the motion of the object ranges from 0 to
40 pixels. It consists of six sequences, namely car1,
car2, tunnel, car003fast40, motorcyle001fast40, and
motorcycle002fast40.

2.	 Medium, if the motion of the objects ranges from 20 to 60
pixels. It consists of five sequences, namely car003fast40,
motorcyle001fast40, motorcycle002fast40, car003fast60,
and motorcyle001fast60.

3.	 Extreme, if the motion of the object ranges from 20 to
100 pixels. It consists of seven sequences, namely racing,
car003fast40, motorcyle003fast40, motorcycle002fast40,
car003fast60, motorcyle001fast60, and car003fast100.

In addition, DSP needs to be tested in a non‐fast motion se-
quence, car4, to show that the method is still stable under this
condition.

4.2  |  Parameters
In DSP, the number of PF particles is the same as that of PSO
particles. This is because DSP transforms the PF particle into
the PSO particle. To perform fair tracker benchmarking, DSP
will use a single parameter for all data, which are 50 particles
with five PSO iterations.

4.3  |  Experimental environment
DSP is executed on a device with Ubuntu 16.04.1 Operating
System, Intel i5‐7400, 3.0 GHz CPU with 24 GB RAM, and
an 8 GB NVIDIA GeForce GTX 1070 graphic card. The
tracker's performance is evaluated based on the precision and
success rate measurement. We use on‐pass‐evaluation, which
evaluates the tracker from the first frame, and then moves
on to evaluate all sequences. Furthermore, the tracker's per-
formance is evaluated based on the precision and success
rate measurements based on the object tracking benchmark
[5]. To provide a fair evaluation, we use a threshold value of
τ = 20 pixels [32]. Each tracker will be measured on the over-
lap value S, which is above the threshold t. This research de-
termines t = 0.5 from the range value of t, which is 0.0 to 1.0.
The precision and success rates are presented in an area under
the curve graph, which is obtained by adjusting the variation
in the threshold τ from 0 to 50 and the threshold t from 0 to 1.

5  |   RESULT DISCUSSION

5.1  |  DSP compared to baseline method
The baseline method of DSP is deep learning tracker (DLT)
[17], which uses particle filter as the motion model and deep
learning approach for the observation model. Hereafter,
Gunawan enhanced DLT using KLD to obtain an efficient
tracker [33]. Gunawan proposed a method called geomet-
ric deep particle filter (GDPF), which has three variations
depending on its transition models: Brownian or random
sampling (GDPF‐Brow), autoregressive with constant α
(GDPF‐Fix), and autoregressive with incremental α (GDPF‐
Inc). Autoregressive means that the method utilizes object
velocity information in spreading the particles.

We run all sequences and compare DSP with the base-
line method in terms of precision and success rate. Table 1
shows that DSP is superior for all levels of fast motions. DSP
obtains a precision above 0.873 for all levels of fast motion,
indicating that the modification of the motion model success-
fully catches the vehicle movement. It shows the capability of
transition model modification within the same base method,
especially for fast motion tracking. The next position is ob-
tained by GDPF‐Inc, which is then followed by GDPF‐Fix.
These two methods obtain a relatively same result, which is
still not much better than the other methods. It depicts that F I G U R E 1 0   Architecture for online tracking (top to bottom)

1

256

512

1,024

2,560

1,024

ELM

SDAE

     |  61JATI et al.

solely using the velocity information for important sampling
can track the vehicle movement. However, it fails to catch the
fast motion with dynamic velocity. The next two methods,
GDPF‐brow and DLT, with no information velocity lose the
object.

The DSP results indicate that the object velocity informa-
tion is essential for the BPF transition model. The dynamic
model using autoregressive gives good effects for tracking fast
motion cars. However, the GDPF‐Inc result is 0.572 because α
increments constantly, and spreads the BPF particles to jump
over the target area. This makes the particle fail to track the
object. GDPF brow also fails to track the fast motion because
of the random transition model, which leads the tracker to be
trapped in a similar vehicle that moves around the target. This
also occurs in DLT, which cannot catch up with the movement
of objects that move further away from the initial position.
The precision results of DSP are more accurate than those of

the GDPF‐based method due to the transition model of DSP,
which has an exploration and an exploitation mechanism. Both
these mechanisms enable the particles to exchange information
to further move into the position with the highest observation.

Table 2 describes the success rate of DSP, which is better
than that of others. The exploration and exploitation of the
particles cause bounding box tracker changes dynamically. In
the standard fast motion dataset, the scale changes smoothly,
while in the medium and extreme fast motions, it changes
dramatically.

Based on Table 3, DSP has the fastest frame per second
(fps) than its baseline method. Although it has an additional

T A B L E 2   Success rate result comparison of dynamic swarm
particle (DSP) and baseline method

Method

Level of fast motion

Standard Medium Extreme

DSP 0.803 0.785 0.733

GDPF‐Inc [33] 0.479 0.480 0.473

GDPF‐Fix [33] 0.292 0.527 0.477

GDPF‐brow [33] 0.358 0.428 0.420

DLT [17] 0.191 0.110 0.107

T A B L E 3   Computation speed in fps comparison of dynamic
swarm particle (DSP) and baseline method

Methods

Type of fast motion

Standard Medium Extreme

DSP 21.73 13.06 12.23

GDPF‐Fix [33] 17.55 8.82 10.27

GDPF‐brow [33] 16.01 10.32 11.73

GDPF‐Inc [33] 17.44 9.37 11.46

DLT [17] 9.80 4.62 5.14

F I G U R E 1 1   Precision result comparison of dynamic swarm
particle and state‐of‐the‐art method on fast motion sequence

Pr
ec

is
io

n

Precision plots of OPE
1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 10 20 30 40 50

Location error threshold

DSP (proposed) [0.896]
SiamFC [0.853]
ECO [0.841]
CFNet [0.811]
MDNet [0.728]
KCF [0.675]
CSK [0.664]
IVT [0.613]
L1APG [0.593]
DFT [0.538]
DLT [0.216]

F I G U R E 1 2   Success rate result comparison of dynamic swarm
particle and state‐of‐the‐art method on fast motion sequence

Su
cc

es
s r

at
e

Success plots of OPE
1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.2 0.4 0.6 0.8 1.0

Overlap threshold

DSP (proposed) [0.755]
ECO [0.729]
SiamFC [0.715]
CFNet [0.666]
MDNet [0.569]
IVT [0.462]
L1APG [0.408]
CSK [0.381]
KCF [0.375]
DFT [0.310]
DLT [0.150]

T A B L E 1   Precision result comparison of dynamic swarm
particle (DSP) and baseline method

Method

Level of fast motion

Standard Medium Extreme

DSP 0.946 0.934 0.873

GDPF‐Inc [33] 0.572 0.668 0.655

GDPF‐Fix [33] 0.373 0.685 0.620

GDPF‐Brow [33] 0.468 0.649 0.618

DLT [17] 0.283 0.152 0.148

62  |     JATI et al.

step, the effectiveness of the particle movements in DSP
makes the process of finding objects faster.

5.2  |  DSP compared to state‐of‐the‐
art method
Dynamic swarm particle is also compared with other state‐
of‐the‐art tracking methods such as ECO [34], KCF [35],
SiamFC [36], CFNet [37], MDNet [38], L1APG [39], DFT
[40], IVT [41], and CSK [42]. DSP achieves the best pre-
cision in the experiment by using fast motion data with a
precision value of 0.896, as shown in Figure 11, which is
followed by the SiamFC tracker, which proposes a fully
convolutional Siamese Network for spatial searching.
SiamFC achieves the second‐best precision because it uses
not only offline training but also online training to enrich
the detection model. The precision rank is then followed by
correlation filter‐based methods such as ECO, CFNet, and
KCF. Another convolution‐based method, MDnet, samples
candidate windows randomly from the previous target. This
approach performs poorly in fast motion because the current
target, which usually has a different appearance from the
previous target.

Other trackers also face challenges in fast motion tracking.
CSK is a tracking‐based detection, and hence, it tends to fail
if the tracking exists in another similar vehicle. Neither DLT
nor IVT can cope with the object's rapid movement. These
two methods use the random transition model. The L1APG
tracker uses sparse approximation in a template sub‐space,
and obtains a good result when faced with an occlusion prob-
lem. The DFT tracker uses the deterministic gradient descent.

This approach leads the DFT to be trapped in a local mini-
mum problem.

Dynamic swarm particle's success rate is better than that
of these other methods, as seen in Figure 12. DSP achieves
0.755 overlap by affine particle representation, which enables
the bounding box to scale adaptively. This approach exhib-
its a significantly increased overlap performance. ECO also

F I G U R E 1 3   Dynamic swarm particle (red bounding box)
tracking result (from top to bottom): (A) car003fast40 and (B)
motorcycle001fast40

#1

(A) (B)

#33

#66

#1

#21

#42

T A B L E 4   Comparison of computation speed, in fps, of dynamic
swarm particle (DSP) and state‐of‐the‐art methods. All methods are
run in CPU, except MDNet, SiamFC, and CFNet, which are run in
GPU

Methods

Type of fast motion

Standard Medium Extreme

CSK [42] 545.10 541.34 518.59

KCF [35] 163.45 292.45 315.48

DFT [40] 31.70 26.11 26.17

IVT [41] 25.34 26.28 25.90

DSP 21.73 13.06 12.23

SiamFC [36] 9.87 7.45 8.00

DLT [17] 9.80 4.62 5.14

CFNet [37] 9.51 7.20 7.78

L1APG [39] 2.22 2.28 2.23

ECO [34] 1.53 2.30 2.45

MDNet [38] 0.64 0.60 0.60

F I G U R E 1 4   Dynamic swarm particle (red bounding box)
tracking result (from bottom to top): (A) racing‐fast motion and (B)
car4‐non fast motion

#1

#78

#156

#1

#330

#659

(B)(A)

     |  63JATI et al.

exhibits scaling capability, so its overlap reaches 0.729. For
the overall result, DSP marginally enhances the performance
of the baseline method, DLT. This indicates that DSP is more
adaptive and resilient to the datasets, from standard, medium,
and even fast motions at extreme levels, where the object
displacement can reach 100 pixels between each frame. The
tracking results can be seen in Figures 13 and 14.

In terms of computational speed, CSK is the fastest be-
cause it uses Gaussian kernel on the Fast Fourier Transform
(FFT). It is faster due to the small number of FFTs called. The
correlation filter in KCF also performs fast computation but

the bounding box size does not change according to the target.
This affects the precision and success rate performance. The
proposed method, DSP, reaches the real‐time (20 fps [43])
tracker computation, which is 21.73 for the standard fast mo-
tion. For medium and extreme fast motions, DSP needs more
particle per iteration so the computation is slightly slower.
Overall, DSP has a faster computation speed compared to
the other method, even though it is tested in the CPU, while
other trackers such as MDNet, SiamFC, and CFNet are per-
formed in the GPU. Table 4 shows the performance recap of
the trackers in terms of computational time.

Based on the type of fast motion, DSP shows a decrease
in computational speed. This is indicated by the drop in
FPS, where in a standard fast motion situation, DSP can
process an average of 21.73 fps. However, the fps drops
to 13.06 and 12.23 in the medium and extreme fast motion

F I G U R E 1 5   Precision result comparison of dynamic swarm
particle and state‐of‐the‐art methods in non‐fast motion sequence

Pr
ec

is
io

n
Precision plots of OPE

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 10 20 30 40 50

Location error threshold

IVT [0.959]
SiamFC [0.953]
ECO [0.952]
DSP (proposed) [0.927]

CFNet [0.905]
KCF [0.796]
CSK [0.615]
L1APG [0.294]

MDNet [0.914]

DLT [0.293]
DFT [0.252]

F I G U R E 1 6   Success rate result comparison of dynamic swarm
particle and state‐of‐the‐art methods in non‐fast motion sequence

Su
cc

es
s r

at
e

Success plots of OPE
1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.2 0.4 0.6 0.8 1.0

Overlap threshold

IVT [0.881]
SiamFC [0.869]
ECO [0.854]
MDNet [0.834]
CFNet [0.823]
DSP (proposed) [0.744]
KCF [0.485]
CSK [0.468]
DFT [0.247]
L1APG [0.246]
DLT [0.179]

F I G U R E 1 7   Dynamic swarm particle confidence on the object
in Car003Fast40 sequence frame by frame

1.00

Frame number

0.98

0.96

0.94

0.92

0.90

0.88

0.86

0.84

0.82

0.80

C
on

fid
en

ce

0 10 20 30 40 50 60 70

F I G U R E 1 8   Number of particles utilized for Car003Fast40
sequence frame by frame

Th
e

nu
m

be
r o

f p
ar

tic
le

Frame number

60

55

50

45

40

35

30

25

20 0 10 20 30 40 50 60 70

64  |     JATI et al.

situations, respectively. In both situations, the target moves
further away, and therefore, there is a need to increase the
amount and iteration of the particle. The decreased compu-
tational speed also occurs on CSK, DFT, SiamFC, DLT, and
CFNet. There are also other trackers that exhibit consistent
speed (IVT, L1APG, ECO, and MDNet). KCF shows an in-
crease in computational speed because it is not affected by
the distance of the target movement. However, the precision
and success rate of this tracker are lower than those of DSP.

5.3  |  DSP stability for non‐fast‐
motion sequence
One way to demonstrate the stability of a particle is to test
the DSP method in a long, non‐fast‐motion sequence, namely
car4, which has 659 frames. Based on Figures 15 and 16,

DSP still achieves high results, even though it is not the
best. DSP remains in the variance of a stable distribution.
This makes DSP to not require resampling. The resampling
process is replaced with a search using swarm particles. The
tracking result can be seen in Figure 14B

5.4  |  How does DSP work?
The performance of the DSP method can be analyzed by
evaluating the confidence and number of particles; we use

F I G U R E 1 9   Dynamic swarm particle confidence on the object
in Motorcycle002fast40 sequence frame by frame

C
on

fid
en

ce

Frame number

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3
0 5 10 15 20 25 30

F I G U R E 2 0   Number of particles utilized for
Motorcycle002fast40 sequence frame by frame

Th
e

nu
m

be
r o

f p
ar

tic
le

Frame number
0 5 10 15 20 25 30

1,000

900

800

700

600

500

100

0

400

300

200

F I G U R E 2 1   Tracker result in motorcycle002fast40 sequence
(from bottom to top frame #1 is initialization). DSP = red,
ECO = green, SiamFC = blue, DLT = black, KCF = magenta,
MDNet = yellow, CFNet = cyan, CSK = gray, IVT = dark red,
DFT = orange, L1APG = turquoise

#1

#10

#13

     |  65JATI et al.

only 20 particles in the analysis. We evaluate the tracker's
confidence frame by frame. One of the sequences that is used
is the Car003Fast40 sequence. Figure 18 shows that we only
utilize 20 particles in the 1st frame to the 50th frame, which
means that it ran on one PSO iteration. In that period, the
tracker's confidence is high (Figure 17), above 0.9. Suddenly,
in the 55th frame, the confidence decreases. Therefore, the
particles iterate again and the number of particles increases
to catch the object's movement. Afterward, we obtain a high
confidence again. We can see the number of utilized particles
frame‐by‐frame in Figure 18.

By combining the motion velocity in the optimization
process, DSP enhances the standard particle filter. In the
motorcycle002fast40 sequence, DSP has low confidence, 0.3
(see Figure 19), for the first three frames. This is due to the
limited vehicle velocity information. However, we overcame
this condition by increasing the number of utilized particles
(Figure 20). After the tracker keeps the confidence stable,
DSP reduces the number of particles. However, after the 10th
frame, the tracker's confidence declines because there are
many objects that have a similar appearance. This is shown
in Figure 21. Afterward, DSP increases the number of par-
ticles to find the object. This strategy escalates the opportu-
nity to find the object even though it is costly. Therefore, our
observation model can robustly distinguish different objects.

Note that several trackers lose the target after the 55th
frame in the Car003fast40 sequence and the 3rd frame in
Motorcycle002fast40 sequence. Therefore, we obtain a new in-
sight for future problems and challenges in tracking vehicles
where the conditions are similar to those in these frames. This
information is useful for other trackers if they want to enhance
the approach. As a new viewpoint, DSP is a novel method that
determines the difficulty level of the tracking data based on the
number of utilized particles in each frame.

6  |   CONCLUSIONS

Based on the assumption of motion continuity, transition
models on the PF can be modified using a dynamic model
based on PSO. This modification of the PF is called DSP.
The transition models in the DSP method are constructed
from a combination of the objects’ velocity information and
PSO algorithms. The DSP algorithm can face the challenges
of a fast‐moving vehicle tracking while maintaining the
ability to handle other challenges. Based on our experiment,
DSP achieves better performance in terms of precision and
success rate in all categories of fast motion sequence.

ACKNOWLEDGMENTS

The authors thank the Grant of competence of indexed
international journal publication No.2523/UN2.R12/

HKP.05.00.2016 year 2016‐2017, entitled “Smart Security
Camera Using Object Tracking and Scene Understanding,”
by the Universitas Indonesia.

REFERENCES

	 1.	 F. J. Martinez et al., Emergency services in future intelligent trans-
portation systems based on vehicular communication networks,
IEEE Intell. Transp. Syst. Mag. 2 (2010), 6–20.

	 2.	 W. Jian et al., A survey on video‐based vehicle behavior analysis
algorithms, J. Multimed. 7 (2012), 223–230.

	 3.	 M. Bommes et al., Video based intelligent transportation systems
state of the art and future development, Transp. Res. Proc. 14
(2016), 4495–4504.

	 4.	 E. Toropov et al., Traffic flow from a low frame rate city camera, in
Proc. IEEE Int. Conf. Image Process., Quebec, Canada, Sept. 2015,
pp. 3802–3806.

	 5.	 Y. Wu, J. Lim, and M. Yang, Object tracking benchmark, IEEE
Trans. Pattern Anal. Mach. Intell. 37 (2015), 1834–1848.

	 6.	 P. Korshunov and W. T. Ooi, Reducing frame rate for object
tracking, Advances in multimedia modeling (S. Boll, Q. Tian, L.
Zhang, Z. Zhang and Y.‐P. Phoebe Chen, eds.), Springer, Berlin,
Heidelberg, 2010, pp. 454–464.

	 7.	 N. Wang et al., Understanding and diagnosing visual tracking sys-
tems, in Proc. IEEE Int. Conf. Comput. Vision, Santiago, Chile,
Dec. 2015, pp. 3101–3109.

	 8.	 A. Del Bimbo and F. Dini, Particle filter‐based visual tracking with
a first order dynamic model and uncertainty adaptation, Comput.
Vis. Image Underst. 115 (2011), 771–786.

	 9.	 W. Guo, Q. Zhao, and G. Dongbing, Visual tracking using an insect
vision embedded particle filter, Math. Probl. Eng. 2015 (2015), 1–16.

	10.	 A. A. S. Gunawan and I. Wasito, Nonretinotopic particle filter for
visual tracking, J. Theor. Appl. Inf. Technol. 63 (2014), 104–111.

	11.	 A. Del Bimbo and F. Dini, Particle filter‐based visual tracking with
a first order dynamic model and uncertainty adaptation, Comput.
Vis. Image Underst. 115 (2011), 771–786.

	12.	 W. Guo, Q. Zhao, and G. Dongbing, Visual tracking using an insect
vision embedded particle filter, Math. Probl. Eng. 2015 (2015),
1–16.

	13.	 A. A. S. Gunawan and I. Wasito, Nonretinotopic particle filter for
visual tracking, J. Theor. Appl. Inf. Technol. 63 (2014), 104–111.

	14.	 A. A. S. Gunawan, M. I. Fanany, and W. Jatmiko, Deep extreme
tracker based on bootstrap particle filter, J Theor. Appl. Inf.
Technol. 66 (2014), 857–863.

	15.	 A. Yilmaz, O. Javed and M. Shah, Object tracking: A survey, ACM
Comput. Surv. 38 (2006), 13:1–13:45.

	16.	 K. Kang et al., Invariant‐feature based object tracking using dis-
crete dynamic swarm optimization, ETRI J. 39 (2017), 151–162.

	17.	 N. Wang and D.‐Y. Yeung, Learning a deep compact image rep-
resentation for visual tracking, Advances in neural information
processing systems 26 (C. J. C. Burges, L. Bottou, M. Welling, Z.
Ghahramani and K. Q. Weinberger, eds.), Curran Associates, Inc.,
San Diego, CA, 2013, pp. 809–817.

	18.	 A. A. S. Gunawan and W. Jatmiko, Geometric deep particle filter
for motorcycle tracking: development of intelligent traffic system in
Jakarta, Int. J. Smart Sens. Intell. Syst. 8 (2015), 429–463.

	19.	 K. Zhang et al., Robust visual tracking via convolutional net-
works without training, IEEE Trans. Image Process. 25 (2016),
1779–1792.

66  |     JATI et al.

	20.	 C. Ma et al., Hierarchical convolutional features for visual track-
ing, in Proc. IEEE Int. Conf. Comput. Vision, Santiago, Chile, Dec.
2015, pp. 3074–3082.

	21.	 Z. Xiaowei, L. Hong, and S. Xiaohong, Object tracking with an
evolutionary particle filter based on self‐adaptive multi‐features
fusion, Int. J. Adv. Rob. Syst. 10 (2013), 61–71.

	22.	 G. S. Walia and R. Kapoor, Intelligent video target tracking using
an evolutionary particle filter based upon improved cuckoo search,
Expert Syst. Appl. 41 (2014), 6315–6326.

	23.	 J. Kwon, K. M. Lee, and F. C. Park, Visual tracking via geomet-
ric particle filtering on the affine group with optimal importance
functions, in Proc. IEEE Conf. Comput. Vision Pattern Recogn.,
Miami, FL, USA, June 2009, pp. 991–998.

	24.	 Y. Xue and S.‐Q. Dai, Continuum traffic model with the consider-
ation of two delay time scales, Phys. Rev. E 68 (2003), 1–6.

	25.	 Q. Chen and Y. Wang, A cellular automata (ca) model for mo-
torized vehicle flows influenced by bicycles along the roadside, J.
Adv. Transport. 50 949–966.

	26.	 Y. Luo et al., Modeling the interactions between car and bicycle in
heterogeneous traffic, J. Adv. Transport. 49 (2015), 29–47.

	27.	 M. Clerc and J. Kennedy, The particle swarm ‐ explosion, stabil-
ity, and convergence in a multidimensional complex space, IEEE
Trans. Evol. Comput. 6 (2002), 58–73.

	28.	 A. Torralba, R. Fergus and W. Freeman, 80 millions tiny images:
a large dataset for non‐parametric object and scene recognition,
IEEE Trans. Pattern Anal. Mach. Intell. 30 (2008), 1958–1970.

	29.	 Y. Wu, J. Lim, and M. Yang, Object tracking benchmark, IEEE
Trans. Pattern Anal. Mach. Intell. 37 (2015), 1834–1848.

	30.	 M. Kristan et al., The visual object tracking VOT2016 challenge
results, in Proc. Comput. Vision – ECCV 2016 Workshops,
Amsterdam, Netherlands, Oct. 2016, pp. 777–823.

	31.	 A. Royet et al., Tracking benchmark and evaluation for manipula-
tion tasks, in Proc. IEEE Int. Conf. Robotics Autom., Seattle, WA,
USA, May 2015, pp. 2448–2453.

	32.	 B. Babenko, M.‐H. Yang, and S. Belongie, Robust object tracking
with online multiple instance learning, IEEE Trans. Pattern Anal.
Mach. Intell. 33 (2011), 1619–1632.

	33.	 A. A. S. Gunawan et al., Tracking efficiency measurement of dy-
namic models on geometric particle filter using KLD‐resampling,
Int. Conf. Adv. Comput. Sci. Inf. Syst. 1 (2014), 385–388.

	34.	 M. Danelljan et al., Eco: efficient convolution operators for
tracking, in Proc. IEEE Conf. Comput. Vision pattern Recogn.,
Honolulu, HI, USA, July 2017, pp. 6931–6939.

	35.	 J. F. Henriques et al., High‐speed tracking with kernelized cor-
relation filters, IEEE Trans. Pattern Anal. Mach. Intell. 37 (2015),
583–596.

	36.	 L. Bertinetto et al., Fully‐convolutional siamese networks for ob-
ject tracking, in Proc. Comput. Vision – ECCV 2016 Workshops,
Amsterdam, Netherlands, Oct. 2016, pp. 850–865.

	37.	 J. Valmadre et al., End‐to‐end representation learning for correla-
tion filter based tracking, in Proc. IEEE Conf. Comput. Vision
Pattern Recogn., Honolulu, HI, USA, July 2017, pp. 5000–5008.

	38.	 H. Nam and B. Han, Learning multi‐domain convolutional neural
networks for visual tracking, in Proc. IEEE Conf. Comput. Vision
Pattern Recogn., Las Vegas, NV, USA, June 2016, pp. 4293–4302.

	39.	 C. Bao et al., Real time robust L1 tracker using accelerated proxi-
mal gradient approach, in Proc. IEEE Conf. Comput. Vis. Pattern
Recogn., Providence, RI, USA, June 2012, pp. 1830–1837.

	40.	 L. Sevilla‐Lara and E. Learned‐Miller, Distribution fields for
tracking, in Proc. IEEE Conf. Comput. Vis. Pattern Recogn.,
Providence, RI, USA, June 2012, pp. 1910–1917.

	41.	 D. A. Ross et al., Incremental learning for robust visual tracking,
Int. J. Comput. Vision 77 (2007), 125–141.

	42.	 J. F. Henriques et al., Exploiting the circulant structure of track-
ing‐by‐detection with kernels, Lect. Notes Comput. Sci. (in-
cluding subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 7575 LNCS (2012), no. PART
4, 702–715.

	43.	 M. Kristan et al., The sixth visual object tracking VOT‐2018 chal-
lenge results, in Eur. Conf. Comput. Vis. Workshops, Munich,
Germany, Sept. 2018, pp. 3–53.

AUTHOR BIOGRAPHIES

Grafika Jati received his BS and MSc
in Computer Science from Universitas
Indonesia in 2014 and 2016, respec-
tively. Currently, he works as a re-
search assistant at the Faculty of
Computer Science, Universitas
Indonesia. His research interest in-

cludes visual object tracking and autonomous robot.

Alexander Agung Santoso Gunawan
received his BS in Mathematics and
MSc in Electrical Engineering from
Bandung Institute of Technology in
2000 and 2003, respectively. In 2016,
he received his Doctoral degree in
Computer Science from Universitas

Indonesia. Currently, he works as a lecturer. His research
interest includes computer vision, machine learning, and
intelligent transportation system.

Wisnu Jatmiko received his BS in
Electrical Engineering and MSc in
Computer Science from Universitas
Indonesia in 1997 and 2000, respec-
tively. In 2007, he received his Dr.
Eng. degree from Nagoya University,
Japan. Currently, he works as a Full

Professor at the Faculty of Computer Science, Universitas
Indonesia. His research interest is autonomous robot,
optimization, and realtime traffic monitoring systems.

