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1  |   INTRODUCTION

An intelligent transportation system (ITS) is an application 
of information technology in the transportation system to 
improve safety and mobility [1]. ITS implementation needs 
supporting technologies, which can be divided into two 
categories: infrastructure‐side technology and vehicle‐side 
technology. In light of the availability of low‐cost cameras 
and embedded systems, we would like to exploit these de-
vices for implementing the supporting technologies based on 
computer vision [2]. Therefore, the grand objective of our 
research is to develop an automatic vehicle tracking system 
by using low‐cost cameras to acquire the traffic data and em-
bedded systems to process the data.

Tracking using a low‐cost camera and an embedded sys-
tem has received considerable research attention due to its 
wide applications in Internet of Things (IoT). Nevertheless, 

there are two main challenges of visual object tracking in IoT 
applications: 1) the low‐cost camera may only produce low‐
frame‐rate videos with low resolution [3] and 2) the limited 
storage and processing power of an embedded system can 
only process low‐frame‐rate videos. Based on the literature 
[4], low‐cost cameras can produce 1 GB to 10 GB of data 
in a single day. Even though there are many existing track-
ing methods, the previously mentioned limitations can make 
most of these tracking methods useless in ITS implementa-
tion. A common solution is to reduce the video frame rate 
to decrease the computational burden of performing object 
tracking. However, this solution will cause the movement of 
the target objects seem faster on the observer's side. Hence, 
we need to modify the tracking method to solve the chal-
lenges in fast motion.

In this study, we formulate our main concern as develop-
ing a tracking method to handle the fast motion challenges. 
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Nowadays, the broad availability of cameras and embedded systems makes the appli-
cation of computer vision very promising as a supporting technology for intelligent 
transportation systems, particularly in the field of vehicle tracking. Although there 
are several existing trackers, the limitation of using low‐cost cameras, besides the 
relatively low processing power in embedded systems, makes most of these trackers 
useless. For the tracker to work under those conditions, the video frame rate must be 
reduced to decrease the burden on computation. However, doing this will make the 
vehicle seem to move faster on the observer's side. This phenomenon is called the 
fast motion challenge. This paper proposes a tracker called dynamic swarm parti-
cle (DSP), which solves the challenge. The term particle refers to the particle filter, 
while the term swarm refers to particle swarm optimization (PSO). The fundamental 
concept of our method is to exploit the continuity of vehicle dynamic motions by 
creating dynamic models based on PSO. Based on the experiments, DSP achieves 
a precision of 0.896 and success rate of 0.755. These results are better than those 
obtained by several other benchmark trackers.
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Wu et  al [5] defined the fast motion challenge as the mo-
tion of an object that is larger than 20 pixels. We use this 
definition as the base standard in our experiments, and then 
experiment with larger threshold values. We also exploit the 
fact that the video frame rate is related to the speed of the 
tracked object [6]. Therefore, to analyze the performance of 
the tracker, we first speed up the video frame rate by ma-
nipulating the stride of a certain video sequence. Then, we 
evaluate the tracker performance to track the targeted object 
in the manipulated video sequence. We also calculate how 
many pixels the object target moves in the manipulated video 
sequence as a comparison to the base standard.

The backbone of the tracking algorithm is the observation 
model and the transition model [7]. The fast motion chal-
lenge is more related to the transition model, which tries to 
capture the dynamic motion of the targeted object. However, 
much of the research in visual object tracking has focused on 
the observation model of the targeted object. Consequently, 
the fast motion challenge has been much less investigated. 
Del Bimbo  and Dini [8] integrated the first‐order dynamic 
model in a particle filter (PF)‐based tracker. Guo et  al [9] 
used a modification of the PF, which is inspired by an insect's 
vision, to increase the accuracy of motion estimation. They 
successfully developed a more adaptive transition model to 
predict object movements more accurately by modeling the 
light distribution of a moving image.

For diagnosing the strengths and weaknesses of visual 
trackers, Wang et al [7] decomposed a tracker into the follow-
ing five main parts: transition model, feature extractor, obser-
vation model, model updater, and ensemble post‐processor. 
They found that setting the parameters in the transition model 
properly is crucial to achieving a good performance in the 
fast motion challenge.

In contrast, the transition model has a close relation with the 
occlusion challenge. Gunawan and Wasito [10] proposed a non-
retinotopic PF algorithm to overcome the occlusion challenge. 
This algorithm monitors the reliability level of the previous ob-
ject tracking. When the quality level of tracking reliability falls 
below a certain threshold, the algorithm will modify its mo-
tion dynamics. Related to the occlusion in vehicle movement, 
Yildirim et al [11] modified the PF using information of vehicle 
angles for assigning weights to the particle. Particles moving in 
the direction of the vehicle will receive a higher weight.

To solve the fast motion challenge, we propose a track-
ing method called, dynamic swarm particle (DSP), where the 
term “particle” is related to the PF in a Monte Carlo simula-
tion [12], a framework that can effectively solve the nonlinear 
dynamics and non‐Gaussian distribution problems in visual 
object tracking. Meanwhile, the term “swarm” refers to the 
particle swarm optimization (PSO) algorithm [13], which 
seeks the optimal candidate solution heuristically. To design 
a tracking system for overcoming the fast motion challenges, 
we employ our previous results [14] as an observation model 

to handle the changes in the object's appearance. This obser-
vation model is based on the state‐of‐the‐art object recogni-
tion task using deep learning techniques, which can learn the 
changes in the object's appearance automatically. The funda-
mental concept of our method is to exploit the continuity of 
vehicle dynamic motions by creating dynamic models based 
on PSO. In this paper, we focus on manipulating the transi-
tion model based on the continuity of motions.

The rest of this paper is organized as follows. Section 2 
describes the visual object tracking terminology in the tran-
sition model and the observation model. It also explains the 
conventional PF and PSO methods. In Section  3, the pro-
posed method, DSP, will be explained. Section 4 depicts the 
experiment setup. Finally, Section 5 discusses the results of 
the proposed method as compared to the existing methods, 
and section 6 presents our conclusion.

2  |   RELATED WORK

2.1  |  Visual object tracking
Object tracking is a process that estimates the state variable 
xt based on a set of observations z1:t−1 in a discrete time t. In 
the general framework, object tracking comprises the follow-
ing four parts: the input frame; the search mechanism, which 
includes the transition and observation models; and the final 
prediction [7].

1.	 Input Frame: In the first frame, the target is appointed 
first. Alternatively, the target can be obtained by ob-
ject detection. In this study, the initialization process is 
conducted by providing a bounding box on the tracked 
object. Furthermore, the object will be represented as 
a state variable in a transformation space.

2.	 Search Mechanism: One of the most important compo-
nents of object tracking is search mechanism, which esti-
mates the object's location. Two approaches can be used 
as the search mechanisms: deterministic and stochastic ap-
proaches. The deterministic approach considers the object 
tracking problem as an optimization problem, which can 
be solved using the gradient descent or optimization algo-
rithms. In contrast, the stochastic approach is more widely 
used for object tracking. This method utilizes Bayesian 
frameworks such as PF and Markov chain Monte Carlo 
[5]. Furthermore, the search mechanism consists of two 
parts:
•	 Transition Model: This model represents movements 

among the state variables in a certain space [12].
•	 Observation Model: This model aims to describe the 

target object, and begins by selecting the features that 
can distinguish objects. Afterward, the object model is 
built based on feature selection [15]. Several previous 
studies have used various observation models such as 
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the raw grayscale, raw color, haar‐like feature, HOG, and 
HOG plus raw color. Recently, Kang et al [16] proposed 
selected invariant feature as the observation model. A 
survey conducted by Wang et al [7] showed that more 
complex feature extraction methods produce more ac-
curate tracking. The rapid development of the deep 
learning algorithm has reached state‐of‐the‐art level in 
feature extraction. Therefore, several previous studies 
have utilized deep learning in developing object tracking 
algorithms, such as Wang and Yeung [17], Gunawan and 
Jatmiko [18], Zhang et al [19], and Ma et al, [20].

3.	 Final Prediction The result of object tracking is a predicted 
bounding box of objects on the nth frame.

2.2  |  Particle filter
A PF is widely used as a transition model. Wang  et al [7] 
compared the PF with other transition models such as sliding 
windows and radius sliding windows, and found that the PF 
obtained the highest precision because it maintains a probabil-
istic estimate on each frame. Each frame can find several target 
object candidates. PFs can keep candidates so that the tracker 
can regain the object when the tracking fails. Additionally, 
PFs can accommodate the transformation of the target object, 
such as scale, aspect ratio, rotation, and skewness.

A PF uses a set of weighted particles to estimate the pos-
terior distribution. This approach is utilized to estimate the 
nonlinear and non‐Gaussian distributions in Bayesian estima-
tion. A PF is the most common formulation of the sequential 
importance sampling method. For details on the PF, please 
refer to [12].

Based on the previous research, a PF gives a poor result 
while tracking fast motion objects. It achieves a success plot 
and a precision of 0.458 and 0.623, respectively, which is 
worse than the precision obtained by the sliding window and 
radius sliding windows [7]. A traditional PF uses random 
Gaussian for spreading particles. If some objects have similar 
appearance, the particles will be easily trapped in the local 
optima. Furthermore, particle degeneration will occur as a 
consequence of eliminating the low‐weighted particles due 
to a less‐precise proposal distribution. This leads to track-
ing loss. Particle degeneration is solved using the resampling 
procedure. However, if the tracker loses diversity among the 

particles, then the tracker fails to catch the dynamic move-
ment of the target.

2.3  |  Particle swarm optimization
Particle swarm optimization is used to optimize a solution 
by seeking the optimal value developed by Kennedy [13]. It 
utilizes a population of particles with a metaheuristic proce-
dure to search for an optimum value by trial and error. This 
procedure has a trade‐off in randomness and local search. 
There is no guarantee that the PSO will be able to obtain the 
best solution. In addition, the solution is dependent on the 
searching time. PSO comprises two phases: exploration and 
exploitation. In the exploration phase, particles are spread so 
that they can explore the search space. This phase reduces 
the risk of particles to be trapped at the local optimum, 
which however results in a slower convergence rate. In the 
exploitation phase, particles are spread only in a local area 
that finds the best solution at that time. This phase aims to 
obtain the optimal solution to achieve a higher convergence 
rate with the risk of being trapped in the local optimum. This 
causes the solution to be dependent on the starting point.

There are several tracking methods that are used in com-
bination with the Bayesian framework with optimization. 
Guo et al [9] put particles into an area with the highest 
posterior value, and did not distribute them in the sam-
pling‐importance resampling area, such as the standard 
PF. Xiaowei et al [21] performed a self‐adaptive crossover 
and mutation to produce new particles in large quantities. 
Walia and Kapoor [22] proposed methods of evolutionary 
PF using cuckoo search to overcome the problem of de-
creasing particles in the standard PF. The research claimed 
to be more reliable and efficient in addressing the issue of 
scaling and rotational errors compared to the standard PF 
and PF with PSO.

3  |   DSP TRACKER

This paper proposes a new tracking method, called DSP. We 
proposed a dynamic model using the velocity of the target 
object, so it brings out the term “dynamic.” DSP is shown in 
Figure 1. DSP is a free model‐based and short‐term tracker 
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that processes a sequence of frames. The object target is de-
termined in the first frame. Afterward, the tracker depends 
on that frame. DSP also does not redetect while losing the 
object.

3.1  |  Affine parameter as a particle 
representation
In visual object tracking, the target object can encounter sev-
eral transformations in the image frame, such as scaling, rota-
tion, reflection, shearing, and translation. According to [23], 
the affine representation can track the object's shape more pre-
cisely compared to the representation by vector position. By 
using affine representation, we can recognize the changes in 
objects in an image frame, as illustrated in Figure 2, where the 
black car is the initial shape of the target object and the blue 
or green parts are the possibility of the object's transformation 
due to its movement. Therefore, we use 2D affine groups as the 
target object representation to anticipate these transformations.

For our proposed algorithm, DSP, we utilize affine rep-
resentation based on Lie group Aff(2), which is similar to 
our previous research [18], where this approach was called 
the geometric transformation method. For the affine trans-
formation class, geometric transformation can be visual-
ized in six modes, as seen in Figure 2. In vehicle tracking, 
the perceived vehicle movements depend on the direction 
of the vehicle to the camera's angle of view. When a vehicle 
moves away or closer to the camera, it appears to be smaller 
or larger, respectively. These changes can be represented 
using similarity transformation, which is mode E1, as seen 
in Figure 2. When a vehicle translates on the x or y‐axis, it 
will change its position in the image frame. These x and y 
translations can be represented as modes E5 and E6, respec-
tively. These modes are important to be anticipated in the 
fast motion challenge. If there is a change in the camera's 

viewpoint, the perceived vehicle in the image frame can be 
deformed. This deformation can be represented by modes 
E2 and E4, as seen in Figure 2. If there is an unusual vehicle 
motion that involves rotation, which might occur when the 
vehicle slips or crashes, it can be represented using mode 
E3. All six modes seen in Figure 2 will create the general 
affine transformation.

3.2  |  Proposed transition model
As stated in the Introduction, we would propose a tracking 
method to deal with the fast motion challenge. The main 
idea is to manipulate the transition model by exploiting the 
continuity of vehicle dynamic motions and integrating it into 
the PSO algorithm. Physical phenomena such as vehicle traf-
fic can be modeled if we can assume that it is a continuum, 
meaning that the phenomenon is distributed continuously 
and can be divided into infinitesimal parts with uniform 
properties. According to [24], the movement of cars can be 
effectively modeled as a continuum. One of the model that 
is very effective is the cellular automaton model [25,26], 
which uses discrete variables to represent the traffic dynami-
cal system. In this approach, the road is divided into road 
part length Δx and the time is discretized into Δt. In addition, 
the vehicle dynamics are modeled in the iterative form as 
follows: xt+1 = xt + vΔt + ɛ. v is the velocity of the system, 
which needs to be defined further, and ɛ is a random error.

By using the above insight, we integrate the velocity con-
cept in our state representation and our geometric model. In 
the geometric approach, a curve space‐like Lie group can be 
transformed accurately to a linear‐space‐like Lie algebra. 
The fundamental idea is that all interactions related to the 
movement parameters are manipulated in the Lie algebra. 
Therefore, they can be controlled easily. The end calcula-
tion is then transformed back to the Lie group. By using this 
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approach, we can create a movement dynamic model more 
precisely. In addition, it is easier to control their parameters. 
Note that the detail of the derivation of the geometric ap-
proach can be seen in [18]. Suppose Xt ∊ Aff(2) is the state 
variable that is analog to position xt in the model below. The 
velocity in our representation can be defined as shown in (1):

Because the state representation is located in the Lie group 
and the model is in the vector representation, or Lie alge-
bra, we have to make a transformation between these two 
spaces using the relation observed in Figure  3. First, we 
transform V to the Lie algebra space, with α as a tuned 
parameter, as shown in (2):

The random error ɛ can be modeled in the Lie algebra space 
as a linear combination of six modes, as shown in Figure 2 
and expressed as follows:

Finally, the updated model can be expressed as follows:

This formula has already been implemented in our previ-
ous research [18] as the transition model of the visual object 
tracking algorithm.

In the proposed method, we further utilize the continuity 
of vehicle dynamics by using the PSO algorithm to catch 
the fast motion. In Figures 4‒9, we illustrate the proposed 
method. To manipulate the particle filter using PSO, we 
work on a linear space, Lie algebra, and assume that each 
particle is a PSO particle. Furthermore, we use confidence 
probability to measure the fitness function of PSO. The con-
fidence level is determined using the observation model in 

(1)V =X−1
t−1

×Xt.

(2)A
t
=�log(X−1

t−1
×X

t
).

(3)dWt =

6
∑

i=1

�t,iEi.

(4)Xt+1 =Xt ×exp (AtΔt+dWt).
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the range of 0.0 to 1.0. The larger the value of confidence 
probability, the more precise is the tracking result. Details of 
the observation model will be explained in the next section.

The last position of the PF phase in Figure 4 will be the 
initial position of our PSO particle. In Figure 4, the green 
particles denote the previous state; the blue particles denote 
the current state; and the yellow particles denote the target 
state. However, in reality, we do not know where the target 
state is, but we can calculate the confidence probability to 
indicate it. Initially, to use the PSO paradigm, we compute 
the state velocity At and shift each particle based on it. The 
shifting can be seen in Figure 5. After this shifting, we can 
calculate the local best particles by comparing the confi-
dence probability before and after the shifting, as illustrated 
in Figure 6. After the shifting, we also compute the global 
best particle by comparing the best confidence probability 
among the current state particles, as seen in Figure 7. Next, 
we use the information of the local and global best particles 
to modify our version of the geometric PSO algorithm:

where Vn+1
i

 is the ith particle velocity on the n + 1 iteration; Vn
i
 

is the ith particle velocity on the n iteration; Xn
i
 is the ith parti-

cle position on the n iteration; Xn+1
i

 is the ith particle position 
on the n + 1 iteration; K is the constriction factor with value 
between 0 and 1; c1 is the cognitive factor that influences 
particle exploitation; c2 is the social factor that influences 
particle exploration; Xpn

i
 is the ith particle's local best posi-

tion on the n iteration; Xn
g
 is the particle's global best position  

on the n iteration; exp(A) is the exponential operation of 
Matrix A for transforming to Lie group; log m(B) is the 
exponential operation of Matrix B for transforming to Lie 
algebra.

In addition, ɛ1 and ɛ2 are two random numbers with values 
between 0 and 1. The parameters c1 and c2 are set around 
2.05, which is to ensure swarm convergence [27]. We choose 
the same c1 and c2 to create a balance between exploration 
and exploitation. Furthermore, the two parameters produce a 
constriction factor K, which has a value of 0.8. All parameters 
factored in (5) are set constantly for each dataset.

As a result, the velocity and position of the particles are up-
dated based on (5) and (6), respectively. In our experiment, we 
set the stopping criteria when the confidence probability reaches 
0.8. If the particle has not reached this value, it will update the 
position using the velocity. This searching process is shown in 
Figure 8. Finally, the PSO iteration will stop when the global 
best particle is really close to the target, as shown in Figure 9.

3.3  |  Observation model
The observation model aims to create a representation for de-
scribing the object that we are tracking. An important part of 
the observation model is the feature extractor, which extracts 
the characteristics of a raw image into a more informative 
representation. The observation model is our fitness function 
that calculates the confidence of each particle based on the 
representation and produces p(zt|xt). The confidence of each 
particle will determine the particle's best position Xpn

i
 and 

global best position Xn
g
, as shown in (5).

We utilize a deep learning method, called stacked de-
noising auto encoder [17], with image data from Torralba 
[28]. This approach has created a good image representation, 
especially for visual object tracking, which can be learned 
automatically. In this research, we adopt our version of the 
approach from our previous research [14,18] by adding the 
extreme learning machine layer to enhance the speed of the 
observation model (Figure 10).

4  |   EXPERIMENT SETUP

4.1  |  Data
Based on the object tracking benchmark [5], if an object 
moves more than 20 pixels (τ = 20), then the object motion is 

(5)
Vn+1

i
=K×Vn

i
×exp

(

c1×�1× log m
(

Xpn
i
× (Xn

i
)−1

)

+ c2×�2× log m

(

Xn
g
(t)× (Xn

i
)−1

))

,

(6)Xn+1
i

=Xn
i
+Vn+1

i
,
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classified as fast motion. This study uses a vehicle sequence 
that contains fast motion and low occlusion objects in a high-
way traffic. We test our method using several selected vehicle 
datasets, namely car1 and car2, from OTB100 [29] and racing 
and tunnel from VOT2016/2018 [30]. We also use other high-
way data, namely car003, motorcycle001, and motorcycle002. 
The target object is taken from the static and dynamic cameras 
from various viewpoints. Some vehicles are tracked from the 
front‐side view, while others are tracked from the rear‐side 
view and bird's‐eye view. These will create different size 
changes, where the object will become either larger or smaller.

To evaluate the robustness of DSP, we also create an arti-
ficial sequence by eliminating some frames (every two, three, 
or four frames). The eliminating procedure simulates the fast 
motion‐based technique developed by Roy and Yusuke Inoue 
[31]. The sequence is divided into three levels of fast motion, 
as follows:

1.	 Standard, if the motion of the object ranges from 0 to 
40 pixels. It consists of six sequences, namely car1, 
car2, tunnel, car003fast40, motorcyle001fast40, and 
motorcycle002fast40.

2.	 Medium, if the motion of the objects ranges from 20 to 60 
pixels. It consists of five sequences, namely car003fast40, 
motorcyle001fast40, motorcycle002fast40, car003fast60, 
and motorcyle001fast60.

3.	 Extreme, if the motion of the object ranges from 20 to 
100 pixels. It consists of seven sequences, namely racing, 
car003fast40, motorcyle003fast40, motorcycle002fast40, 
car003fast60, motorcyle001fast60, and car003fast100.

In addition, DSP needs to be tested in a non‐fast motion se-
quence, car4, to show that the method is still stable under this 
condition.

4.2  |  Parameters
In DSP, the number of PF particles is the same as that of PSO 
particles. This is because DSP transforms the PF particle into 
the PSO particle. To perform fair tracker benchmarking, DSP 
will use a single parameter for all data, which are 50 particles 
with five PSO iterations.

4.3  |  Experimental environment
DSP is executed on a device with Ubuntu 16.04.1 Operating 
System, Intel i5‐7400, 3.0 GHz CPU with 24 GB RAM, and 
an 8  GB NVIDIA GeForce GTX 1070 graphic card. The 
tracker's performance is evaluated based on the precision and 
success rate measurement. We use on‐pass‐evaluation, which 
evaluates the tracker from the first frame, and then moves 
on to evaluate all sequences. Furthermore, the tracker's per-
formance is evaluated based on the precision and success 
rate measurements based on the object tracking benchmark 
[5]. To provide a fair evaluation, we use a threshold value of 
τ = 20 pixels [32]. Each tracker will be measured on the over-
lap value S, which is above the threshold t. This research de-
termines t = 0.5 from the range value of t, which is 0.0 to 1.0. 
The precision and success rates are presented in an area under 
the curve graph, which is obtained by adjusting the variation 
in the threshold τ from 0 to 50 and the threshold t from 0 to 1.

5  |   RESULT DISCUSSION

5.1  |  DSP compared to baseline method
The baseline method of DSP is deep learning tracker (DLT) 
[17], which uses particle filter as the motion model and deep 
learning approach for the observation model. Hereafter, 
Gunawan enhanced DLT using KLD to obtain an efficient 
tracker [33]. Gunawan proposed a method called geomet-
ric deep particle filter (GDPF), which has three variations 
depending on its transition models: Brownian or random 
sampling (GDPF‐Brow), autoregressive with constant α 
(GDPF‐Fix), and autoregressive with incremental α (GDPF‐
Inc). Autoregressive means that the method utilizes object 
velocity information in spreading the particles.

We run all sequences and compare DSP with the base-
line method in terms of precision and success rate. Table 1 
shows that DSP is superior for all levels of fast motions. DSP 
obtains a precision above 0.873 for all levels of fast motion, 
indicating that the modification of the motion model success-
fully catches the vehicle movement. It shows the capability of 
transition model modification within the same base method, 
especially for fast motion tracking. The next position is ob-
tained by GDPF‐Inc, which is then followed by GDPF‐Fix. 
These two methods obtain a relatively same result, which is 
still not much better than the other methods. It depicts that F I G U R E  1 0   Architecture for online tracking (top to bottom)
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solely using the velocity information for important sampling 
can track the vehicle movement. However, it fails to catch the 
fast motion with dynamic velocity. The next two methods, 
GDPF‐brow and DLT, with no information velocity lose the 
object.

The DSP results indicate that the object velocity informa-
tion is essential for the BPF transition model. The dynamic 
model using autoregressive gives good effects for tracking fast 
motion cars. However, the GDPF‐Inc result is 0.572 because α 
increments constantly, and spreads the BPF particles to jump 
over the target area. This makes the particle fail to track the 
object. GDPF brow also fails to track the fast motion because 
of the random transition model, which leads the tracker to be 
trapped in a similar vehicle that moves around the target. This 
also occurs in DLT, which cannot catch up with the movement 
of objects that move further away from the initial position. 
The precision results of DSP are more accurate than those of 

the GDPF‐based method due to the transition model of DSP, 
which has an exploration and an exploitation mechanism. Both 
these mechanisms enable the particles to exchange information 
to further move into the position with the highest observation.

Table 2 describes the success rate of DSP, which is better 
than that of others. The exploration and exploitation of the 
particles cause bounding box tracker changes dynamically. In 
the standard fast motion dataset, the scale changes smoothly, 
while in the medium and extreme fast motions, it changes 
dramatically.

Based on Table 3, DSP has the fastest frame per second 
(fps) than its baseline method. Although it has an additional 

T A B L E  2   Success rate result comparison of dynamic swarm 
particle (DSP) and baseline method

Method

Level of fast motion

Standard Medium Extreme

DSP 0.803 0.785 0.733

GDPF‐Inc [33] 0.479 0.480 0.473

GDPF‐Fix [33] 0.292 0.527 0.477

GDPF‐brow [33] 0.358 0.428 0.420

DLT [17] 0.191 0.110 0.107

T A B L E  3   Computation speed in fps comparison of dynamic 
swarm particle (DSP) and baseline method

Methods

Type of fast motion

Standard Medium Extreme

DSP 21.73 13.06 12.23

GDPF‐Fix [33] 17.55 8.82 10.27

GDPF‐brow [33] 16.01 10.32 11.73

GDPF‐Inc [33] 17.44 9.37 11.46

DLT [17] 9.80 4.62 5.14

F I G U R E  1 1   Precision result comparison of dynamic swarm 
particle and state‐of‐the‐art method on fast motion sequence
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F I G U R E  1 2   Success rate result comparison of dynamic swarm 
particle and state‐of‐the‐art method on fast motion sequence
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T A B L E  1   Precision result comparison of dynamic swarm 
particle (DSP) and baseline method

Method

Level of fast motion

Standard Medium Extreme

DSP 0.946 0.934 0.873

GDPF‐Inc [33] 0.572 0.668 0.655

GDPF‐Fix [33] 0.373 0.685 0.620

GDPF‐Brow [33] 0.468 0.649 0.618

DLT [17] 0.283 0.152 0.148
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step, the effectiveness of the particle movements in DSP 
makes the process of finding objects faster.

5.2  |  DSP compared to state‐of‐the‐
art method
Dynamic swarm particle is also compared with other state‐
of‐the‐art tracking methods such as ECO [34], KCF [35], 
SiamFC [36], CFNet [37], MDNet [38], L1APG [39], DFT 
[40], IVT [41], and CSK [42]. DSP achieves the best pre-
cision in the experiment by using fast motion data with a 
precision value of 0.896, as shown in Figure 11, which is 
followed by the SiamFC tracker, which proposes a fully 
convolutional Siamese Network for spatial searching. 
SiamFC achieves the second‐best precision because it uses 
not only offline training but also online training to enrich 
the detection model. The precision rank is then followed by 
correlation filter‐based methods such as ECO, CFNet, and 
KCF. Another convolution‐based method, MDnet, samples 
candidate windows randomly from the previous target. This 
approach performs poorly in fast motion because the current 
target, which usually has a different appearance from the 
previous target.

Other trackers also face challenges in fast motion tracking. 
CSK is a tracking‐based detection, and hence, it tends to fail 
if the tracking exists in another similar vehicle. Neither DLT 
nor IVT can cope with the object's rapid movement. These 
two methods use the random transition model. The L1APG 
tracker uses sparse approximation in a template sub‐space, 
and obtains a good result when faced with an occlusion prob-
lem. The DFT tracker uses the deterministic gradient descent. 

This approach leads the DFT to be trapped in a local mini-
mum problem.

Dynamic swarm particle's success rate is better than that 
of these other methods, as seen in Figure 12. DSP achieves 
0.755 overlap by affine particle representation, which enables 
the bounding box to scale adaptively. This approach exhib-
its a significantly increased overlap performance. ECO also 

F I G U R E  1 3   Dynamic swarm particle (red bounding box) 
tracking result (from top to bottom): (A) car003fast40 and (B) 
motorcycle001fast40 
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T A B L E  4   Comparison of computation speed, in fps, of dynamic 
swarm particle (DSP) and state‐of‐the‐art methods. All methods are 
run in CPU, except MDNet, SiamFC, and CFNet, which are run in 
GPU

Methods

Type of fast motion

Standard Medium Extreme

CSK [42] 545.10 541.34 518.59

KCF [35] 163.45 292.45 315.48

DFT [40] 31.70 26.11 26.17

IVT [41] 25.34 26.28 25.90

DSP 21.73 13.06 12.23

SiamFC [36] 9.87 7.45 8.00

DLT [17] 9.80 4.62 5.14

CFNet [37] 9.51 7.20 7.78

L1APG [39] 2.22 2.28 2.23

ECO [34] 1.53 2.30 2.45

MDNet [38] 0.64 0.60 0.60

F I G U R E  1 4   Dynamic swarm particle (red bounding box) 
tracking result (from bottom to top): (A) racing‐fast motion and (B) 
car4‐non fast motion 
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exhibits scaling capability, so its overlap reaches 0.729. For 
the overall result, DSP marginally enhances the performance 
of the baseline method, DLT. This indicates that DSP is more 
adaptive and resilient to the datasets, from standard, medium, 
and even fast motions at extreme levels, where the object 
displacement can reach 100 pixels between each frame. The 
tracking results can be seen in Figures 13 and 14.

In terms of computational speed, CSK is the fastest be-
cause it uses Gaussian kernel on the Fast Fourier Transform 
(FFT). It is faster due to the small number of FFTs called. The 
correlation filter in KCF also performs fast computation but 

the bounding box size does not change according to the target. 
This affects the precision and success rate performance. The 
proposed method, DSP, reaches the real‐time (20 fps [43]) 
tracker computation, which is 21.73 for the standard fast mo-
tion. For medium and extreme fast motions, DSP needs more 
particle per iteration so the computation is slightly slower. 
Overall, DSP has a faster computation speed compared to 
the other method, even though it is tested in the CPU, while 
other trackers such as MDNet, SiamFC, and CFNet are per-
formed in the GPU. Table 4 shows the performance recap of 
the trackers in terms of computational time.

Based on the type of fast motion, DSP shows a decrease 
in computational speed. This is indicated by the drop in 
FPS, where in a standard fast motion situation, DSP can 
process an average of 21.73 fps. However, the fps drops 
to 13.06 and 12.23 in the medium and extreme fast motion 

F I G U R E  1 5   Precision result comparison of dynamic swarm 
particle and state‐of‐the‐art methods in non‐fast motion sequence
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F I G U R E  1 6   Success rate result comparison of dynamic swarm 
particle and state‐of‐the‐art methods in non‐fast motion sequence
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F I G U R E  1 7   Dynamic swarm particle confidence on the object 
in Car003Fast40 sequence frame by frame
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situations, respectively. In both situations, the target moves 
further away, and therefore, there is a need to increase the 
amount and iteration of the particle. The decreased compu-
tational speed also occurs on CSK, DFT, SiamFC, DLT, and 
CFNet. There are also other trackers that exhibit consistent 
speed (IVT, L1APG, ECO, and MDNet). KCF shows an in-
crease in computational speed because it is not affected by 
the distance of the target movement. However, the precision 
and success rate of this tracker are lower than those of DSP.

5.3  |  DSP stability for non‐fast‐
motion sequence
One way to demonstrate the stability of a particle is to test 
the DSP method in a long, non‐fast‐motion sequence, namely 
car4, which has 659 frames. Based on Figures  15 and 16, 

DSP still achieves high results, even though it is not the 
best. DSP remains in the variance of a stable distribution. 
This makes DSP to not require resampling. The resampling 
process is replaced with a search using swarm particles. The 
tracking result can be seen in Figure 14B

5.4  |  How does DSP work?
The performance of the DSP method can be analyzed by 
evaluating the confidence and number of particles; we use 

F I G U R E  1 9   Dynamic swarm particle confidence on the object 
in Motorcycle002fast40 sequence frame by frame
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only 20 particles in the analysis. We evaluate the tracker's 
confidence frame by frame. One of the sequences that is used 
is the Car003Fast40 sequence. Figure 18 shows that we only 
utilize 20 particles in the 1st frame to the 50th frame, which 
means that it ran on one PSO iteration. In that period, the 
tracker's confidence is high (Figure 17), above 0.9. Suddenly, 
in the 55th frame, the confidence decreases. Therefore, the 
particles iterate again and the number of particles increases 
to catch the object's movement. Afterward, we obtain a high 
confidence again. We can see the number of utilized particles 
frame‐by‐frame in Figure 18.

By combining the motion velocity in the optimization 
process, DSP enhances the standard particle filter. In the 
motorcycle002fast40 sequence, DSP has low confidence, 0.3 
(see Figure 19), for the first three frames. This is due to the 
limited vehicle velocity information. However, we overcame 
this condition by increasing the number of utilized particles 
(Figure  20). After the tracker keeps the confidence stable, 
DSP reduces the number of particles. However, after the 10th 
frame, the tracker's confidence declines because there are 
many objects that have a similar appearance. This is shown 
in Figure 21. Afterward, DSP increases the number of par-
ticles to find the object. This strategy escalates the opportu-
nity to find the object even though it is costly. Therefore, our 
observation model can robustly distinguish different objects.

Note that several trackers lose the target after the 55th 
frame in the Car003fast40 sequence and the 3rd frame in 
Motorcycle002fast40 sequence. Therefore, we obtain a new in-
sight for future problems and challenges in tracking vehicles 
where the conditions are similar to those in these frames. This 
information is useful for other trackers if they want to enhance 
the approach. As a new viewpoint, DSP is a novel method that 
determines the difficulty level of the tracking data based on the 
number of utilized particles in each frame.

6  |   CONCLUSIONS

Based on the assumption of motion continuity, transition 
models on the PF can be modified using a dynamic model 
based on PSO. This modification of the PF is called DSP. 
The transition models in the DSP method are constructed 
from a combination of the objects’ velocity information and 
PSO algorithms. The DSP algorithm can face the challenges 
of a fast‐moving vehicle tracking while maintaining the 
ability to handle other challenges. Based on our experiment, 
DSP achieves better performance in terms of precision and 
success rate in all categories of fast motion sequence.
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