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<Abstract>

We present a method for improving adaptability of Learning from Demonstration 

(LfD) strategy by combining the LfD and Particle Swarm Optimization (PSO). A 

trajectory generated from an LfD is modified with PSO by minimizing a fitness 

function that considers constraints. Finally, the final trajectory is suitable for a task 

and adapted for constraints. The effectiveness of the method is shown with a target 

reaching task with a manipulator in three-dimensional space.
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1. Introduction

Motion planning finds a sequence of 

actions that move from an initial 

configuration to a goal configuration. A 

representative approximation method for 

solving high dimensional motion planning 

problem is Rapidly-Exploring Random Tree 

(RRT) [1], [2]. The algorithm samples an 

action in a state space, constructs tree 

structure and finds a path that starts from an 

initial configuration to a goal configuration. 

Another approach for motion planning in a 

high-dimensional space is a Learning from 

Demonstration (LfD) strategy [3], [4]. In the 

LfD, trajectories that a robot should follow 

are extracted from human demonstrations and 

those are used as data for encoding motions 

and they are used for a motion planning. 

The advantage of the LfD method is that it 

can find a motion planning solution that is 

suitable to a task in a short time.

A. Ude and et al. [5] suggested LfD 

method for various general tasks. In [5], 

trajectories demonstrated by a human are 

encoded by Dynamic Motion Primitives 

(DMPs) [6], [7]. The method was extended in 

[8] for real-time motion planning. Although 

the method successfully generates a motion 

when a query point is similar to learned 

trajectories, it has a limitation when 

additional constraints such as an obstacle 

avoidance, a velocity limitation, and a short 

distance constraints are added. Even though 

frameworks for the LfD for dealing with 

constraints were suggested in [9]–[11], they 

only consider a few numbers of constraints 

and setting for the constraints is not 

tractable.

In this paper, we combine LfD and Particle 

Swarm Optimization [12], [13] for adaptation 

of trajectory to a task. Although those two 

methods can be used independently, their 

advantages can be utilized when those 

methods are combined. Amounts of 

modification for a trajectory generated from 

the LfD is encoded into a parameter and it is 

optimized with PSO. The final trajectory 

becomes suitable for a task and adapts for 

constraints. The proposed method follows 

similar procedure shown in [15] and 

improves adaptation performance by using 

PSO which is a stochastic global optimization 

method.

The paper is organized as follows. In 

section 2, combination method of LfD and 

PSO are provided. In section 3, the 

simulation setup is addressed and results of 

the proposed method is analyzed. Finally 

concluding remarks and discussion are 

provided in section 4.

2. Combination of Learning from 

Demonstration and Particle Swarm 

Optimization

2.1 Generalization of DMPs for LfD

In this section, LfD framework that is used 

in the paper is briefly summarized. LfD 
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method proposed by Ude and et al. [5] is 

applied to proposed method because it shows 

a good generalization property and have been 

applied to many real-world applications. 

The procedure for the generalization of 

DMPs consists of two stages. The first stage 

is a data collection stage for learning and the 

second stage is a trajectory generalization 

stage for motion planning. In the data 

collection stage, trajectories that should be 

followed are collected from human 

demonstrations and the set of trajectories 

consists of the 

  








 

  ⋯  ⋯
      (1)

where 








 , and qk 

are measured positions, velocities, and 

acceleration on trajectory k, number of 

examples, number of sampling points on 

each trajectory, parameters describing a task. 

Here, the qk is used as query points and a 

structure of the DMPs is determined by these 

parameters. DMPs are specified by the 

weighting factor w, time constant τ, and 

goal point g and relations between q and (w, 

τ, g) are learned with the data set Z,

G(Z) : q → [wT,τ,g]T.

Gaussian process regression (GPR) [16] is 

used for estimating τ and g and Locally 

Weighted Regression (LWR) [17] is used for 

estimating the w. For a new query point q, 

it is used as an input of GPR and LWR and 

time constant τ and goal point g are 

generated from GPR, and weighting factor w 

is generated from LWR. DMPs are 

constructed based on the parameters.

In [8], the original generalization of DMP 

was referred as Raw Trajectories 

Generalization (RTG) and the modified 

generalization of DMP was referred as 

Movement Primitives Generalization (MPG). 

The DMP parameters τ and g are estimated 

with GPR and w is estimated with LWR in 

RTW and τ, g, and w are estimated with 

GPR in MPG. A DMP is corresponded to 

each joint and DMPs are used to generate a 

trajectory. The joint trajectories for each time 

are generated with the DMPs and the 

position of the end-effector is obtained by 

kinematics. In this paper, the MPG is used 

for generating a trajectory of LfD.

2.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a 

population based stochastic optimization 

method inspired by social behavior in a 

nature such as bird flocking or fish schooling 

[12], [13]. The PSO uses a concept called a 

particle and a swarm. A particles is 

corresponding to an animal, a bird, and an 

insect in a herd, a flock, and a swarm 

respectively. Each particle has own position 

and velocity and they are randomly initialized 

in a search space. When number of particles 

in a swarm is S and each particle has a D 

dimensional vector at iteration i, positions 

and the velocities of particles are represented 

as (2) and (3) respectively.

     ⋯       (2)
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     ⋯       (3)

where Xi(s) and Vi(s) are D dimensional 

vectors.

As increase an iteration, the particles 

cooperate and finally reach a solution by 

preserving and sharing their previous best 

position. Particles store their best experience 

during optimization process and velocity and 

position of each particle are updated by (4) 

and (5) respectively.

     

   
  (4)

                 (5)

where Vi(s) is a velocity and Xi(s) is a 

position of a particle at i iteration. And pbest 

is a previous best position for each particle 

and lbest is a best position of the local 

particle obtained so far. ϕ1 and ϕ2 are 

determined as ϕ1 = rand(0, c1), ϕ2 = rand(0, 

c2) and c1 is a cognition learning factor and 

c2 is a social learning factor.

The optimization procedure of the PSO is 

summarized in Algorithm 1. First, the velocity 

and position of particles are initialized in the 

search space. And then each particle is 

evaluated and positions of particle are 

updated until the max iteration.

R. A. Krohling [14] suggested velocity 

update equation based on the Gausssian 

distribution random number generator in PSO 

and named it as Gaussian Swarm. It does  

not require PSO cognition learning factor c1 

and social learning factor c2 and converges 

faster than canonical PSO. The velocity 

change equation of Gaussian Swarm is (6)

     

   
   (6)

where |randn| is a positive random number 

generated according to the absolute value of 

the normal distribution, i.e., abs[N(0,1)].

2.3 Trajectory modification vector for 

Learning from Demonstration

In the case of the time duration between a 

start point and a goal point is T and 

sampling time is dt, number of steps of the 

trajectories is N = T/dt. The amount of 

trajectories modification for each step is 

optimized with PSO. When a trajectory 

generated from LfD is Plfd(t) and modification 
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amount is Pmod(t), the final trajectory P(t) 

for an execution is represented as

  mod for  …×

   for    and  ×

(7)

P(t) can be a trajectories in Cartesian space 

or in joints space. When n = t/dt is set, 

above equations are changed to

  mod for   …

   for   and 
  

(8)

The procedure for adapting the trajectory 

for constraints are shown in Fig. 1. The 

optimization algorithm, PSO, optimizes the 

P[n]mod and the final trajectory P[n] is 

obtained by combining P[n]lfd and P[n]mod.

2.4 Fitness function for optimization

A fitness function to be minimized has a 

following form.

     
  



      (9) 

where Consti(·) are functions that represent 

each constraints, Wi are weighting factors 

that balance the relative importance of each 

constraint and NC is the number of 

constraints.

The first constraint minimizes the 

modifications to a trajectory and has the 

form

min 




  
  





mod
 

f or  …

 

(10)

A trajectory generated from the LfD should 

be modified as small as possible to make a 

trajectory that is similar to a demonstration 

because the demonstrated trajectory is 

suitable for a task.

The second constraint is for minimum 

acceleration and has the form

min  

for  …

       (11)

where the function |acc(p)| is the 

Fig. 1. The procedure for adapting a trajectory for 
constraints. The final trajectory is combination 
of a trajectory generated from LfD and a 
modification amount optimized with PSO.

magnitude of the acceleration for a step and 

can be calculated with finite differences. The 

finite difference equation for each dimension 

is

 


 
     

(12)
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In this study, dt is set as 1 and acc(P[n]) 

is calculated for each dimension of the 

workspace. Usually, minimizing the 

acceleration is important for saving energy 

and avoiding a sudden change in the motion.

  The third constraint is for avoiding 

obstacles and has a following form

 
 



 

f or  …

(13)

where Obs[o] is the location of the center of 

the obstacle, R[o] is the radius of the 

obstacle o, O is the number of obstacles, 

Rsafe is the radius for a safe margin and the 

function δ(a1,a2) is an activation function 

whose value is 1 when a2 is less than a1 and 

0 otherwise. In this paper, we assume that 

obstacles are static and approximated with 

compositions of spheres.

The final objective function to be 

optimized is

 
 













minmin
minmin












    

(14)

The final fitness function is the sum of the 

fitness value for steps between 0 and N − 
1.

3. Simulations

3.1 Simulation setting 

In this section, proposed method is verified 

by simulations. The simulations are aim for 

reaching task with an arm-type manipulator 

which is basic in motion planning. Various 

tasks such as pick and place task can be 

utilized based on the task. For implementing 

a LfD framework, we selected Movement 

Primitives Generalization (MPG) [8] that can 

be used for a real-time trajectory generation.

For the simulation, the trajectories that 

start from an initial position and move to 

final positions were generated and those 

were used for learning MPG. The robot being 

simulated is shown in Fig. 2. The values of 

the parameters in the figure were L1 = 1.7 

cm, L2 = 1.7 cm, L3 = 6.7 cm and L4 = 10 

cm. The parameters of the DMP for MPG are 

Ndmp= 20, βz= 1, αz= 4βz, and αx= 0.1. 

Sampling time is dt = 0.01s, trajectory end 

time is T = 0.5s, and number for the 

trajectory segment is N = 50. We generated 

75 minimum jerk trajectories [18] in the joint 

space that have zero velocity and 

acceleration at the start point and goal point.

Fig. 2. Kinematic model of the robot arm. The robot 
has 3 joints and 4 links. The first joint rotates 
about the y-axis, and the second and third 
joints rotate about the x-axis.
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Final positions in Cartesian coordinate are 

set as query points. The query point in x 

axis are located from 12 cm to 16 cm and y 

and z axis are located from −4.0 cm to 4.0 

cm and the step for each point is set as 2 

cm. The query points in Cartesian space are 

shown in Fig. 3.

Fig. 3. Query point for learning MPG. Each trajectory 
starts from an initial position and reach a 
goal point that is used for a query point. 
Total number of query point is 75.

Fig. 4. Trajectory with collision before an adaptation.

The circles in Fig. 3 are query points and 

there are 75 points. Those trajectories are 

used for learning the MPG. Obstacles were 

located at (15.0,−1.0,−5.0) cm and (10.0,−

2.0,−14.0) cm and their radius are 4 cm and 

2 cm respectively. When a query point is 

(12.0,−4.0,4.0) cm, a trajectory collides with 

the obstacles as shown in Fig. 4. In this 

case, the adaptation should be conducted.

Number of the iteration for PSO was set 

as 200 and number of particles was set as 

100. The initial particles were initialized with 

normal distribution N(0, 0.012). The weight 

parameters were set as Wminacc=Wminmod=10 

and Wobsavo=1000. The safe margin Rsafe was 

set as 0.1. In this setting, PSO tries to 

minimize the fitness function.

3.2 Simulation result

The result of the trajectory adaptation with 

PSO in three dimensional space is shown in 

Fig. 5. The trajectory avoided  obstacles and 

reached the goal. The initial trajectory, 

trajectory modification amount, and final 

trajectory in each axis are shown in Fig. 6. 

The steps that violate constraints are 

optimized and a final trajectory was modified. 

The fitness value for each iteration is shown 

in Fig. 7. As shown in Fig. 7, the fitness 

value was continuously decreased as iteration 

goes. The initial fitness value was 7935.99 

and final fitness value was 299.92. It was 

reduced for adapting constraints.

4. Conclusion

In this paper, adaptation method for LfD 

with PSO was proposed. A trajectory 
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generated from an LfD was modified with 

PSO. The final trajectory was suitable for task 

because it was adapted for a constraints. The 

simulations for generating a trajectory that 

reaches a goal point in three dimensional 

space with a robot were conducted. The 

proposed algorithm successfully modified a 

trajectory to adapt to constraints and could 

improve the adaptability of the LfD.

Fig. 5. Trajectory adaptation result. The optimizer 
modified an orignal trajectory generated 
from MPG and avoided obstacles. 

Fig. 7. fitness value for each iteration.

References

[1] S. M. LaValle, “Rapidly-exploring 

random trees: A new tool for path 

planning,” TR 98-11, Computer Science 

Dept., Iowa State University, 1998.

[2] S. M. LaValle, “Planning algorithms,” 

Cambridge University Press, 2006.

[3] A. Billard, S. Calinon, R. Dillmann, 

S.Schaal, “Robot programming by 

Demonstration,” Handbook of Robotics, 

Springer, pp. 1371-1394, 2008.

[4] B. D. Argall, S. Chernova, M. Veloso, 

and B. Browning, “A survey of robot 

learning from demonstration,” Robotics 

and Autonomous Systems, vol. 57, no. 

5, pp. 469-483, 2009.

[5] A. Ude, A. Gams, T. Asfour, J. 

Morimoto, “Task-Specific generalization 

of discrete and periodic dynamic 

movement primitives,” IEEE Tran. on 

Robotics, vol. 26, no. 5, 2010.

[6] A. J. Ijspeert, J. Nakanishi, and S. 

Schaal, “Movement imitation with 

nonlinear dynamical systems in 

humanoid robots,” in Proc. IEEE Int. 

Conf. Robot. Autom., pp. 1398-1403, 

2002.

[7] A. J. Ijspeert, J. Nakanishi, and S. 

Schaal, “Learning rhythmic movements 

by demonstration using nonlinear 

oscillators,” in Proc. IEEE/RSJ Int. Conf. 

Intell. Robots Syst., pp. 958-963, 2002.

[8] D. Forte, A. Gams, J. Morimoto, A. Ude, 

“On-line motion synthesis and 

adaptation using a trajectory database,” 

Robotics and Autonomous Systems, vol. 



175

 

운동계획을 위한 입자 군집 최적화를 이용한 시범에 의한 학습의 적응성 향상

60, pp. 1327-1339, 2012.

[9] S. Calinon, F. Guenter, and A. Billard, 

“On learning, representing, and 

generalizing a task in a humanoid 

robot,” IEEE Trans. on Systems, Man, 

and Cyber., Part B: Cyber., vol. 37 pp. 

286-298, 2007.

[10] S. Calinon, and A. Billard, “A 

probabilistic programming by 

demonstration framework handling 

constraints in joint space and task 

space,” in Proc. IEEE/RSJ Int. Conf. 

Intell. Robots Syst., pp. 367-372, 2008.

[11] S. Calinon, F. D’halluin, D. G. 

Caldwell, and A. Billard, 2009, 

“Handling of multiple constraints and 

motion alternatives in a robot 

programming by demonstration 

framework,” in Proc. IEEE/RAS Int. 

Conf. Humanoids, pp. 582-588, 2009

[12] J. Kennedy, R. Eberhart, “Particle 

swarm optimization,” Proc. of the IEEE 

Int. Conf. on Neural Networks, vol. 4, 

pp. 1942-1948, 1995.

[13] A. Abraham, H. Guo, and H. Liu, 

“Swarm intelligence: foundations, 

perspectives and applications,” Stu. in 

Compu. Inte., Springer, vol 26, pp. 

3-25, 2006.

[14] R. Krohling, “Gaussian swarm: a novel 

particle swarm optimization algorithm,” 

IEEE Conf. on Cyber. and Int. Sys., 

vol. 1, pp. 372-376, Dec. 2004.

[15] J.-J Kim, S.-Y. Park, and J.-J. Lee, 

“Adaptability improvement of learning 

from demonstration with sequential 

quadratic programming for motion 

planning,” IEEE Conf. on Adv. Int. 

Mech., pp. 1032-1037, 2015.

[16] C. E. Rasmussen and C. K. I. Williams, 

“Gaussian processes for machine 

learning,” MIT Press, 2006.

[17] C. G. Atkeson, A.W. Moore, and S. 

Schaal, “Locally weighted learning,” 

Artif. Intell. Rev., vol. 11, pp. 75-113, 

1997.

[18] T. Flash, N. Hogan, “The coordination 

of arm movements: an experimentally 

confirmed mathematical model,” The 

Journal of Neuroscience, vol. 5, no. 7, 

pp. 1688-1703, 1985.

(접수:2016.09.12.,수정:2016.10.10, 개제확정:2016.11.01)




