
167

https://doi.org/10.21289/KSIC.2016.19.4.167

운동계획을 위한 입자 군집 최적화를 이용한 시범에 의한 학습의 적응성 향상

운동계획을 위한 입자 군집 최적화를 이용한
시범에 의한 학습의 적응성 향상

Adaptability Improvement of Learning from Demonstration
with Particle Swarm Optimization for Motion Planning

김정중1*, 이주장2

Jeong-Jung Kim1, Ju-Jang Lee2

<Abstract>

We present a method for improving adaptability of Learning from Demonstration

(LfD) strategy by combining the LfD and Particle Swarm Optimization (PSO). A

trajectory generated from an LfD is modified with PSO by minimizing a fitness

function that considers constraints. Finally, the final trajectory is suitable for a task

and adapted for constraints. The effectiveness of the method is shown with a target

reaching task with a manipulator in three-dimensional space.

Keywords : Motion planning, Particle swarm optimization, Learning,
Manipulator

1. * 교신저자, KIST, (E-mail: rightcore@gmail.com)
2. KAIST, (E-mail: jjlee@ee.kaist.ac.kr)

1. * Corresponding author, KIST
2. KAIST

168 한국산업융합학회 논문집 제19권 제4호

1. Introduction

Motion planning finds a sequence of

actions that move from an initial

configuration to a goal configuration. A

representative approximation method for

solving high dimensional motion planning

problem is Rapidly-Exploring Random Tree

(RRT) [1], [2]. The algorithm samples an

action in a state space, constructs tree

structure and finds a path that starts from an

initial configuration to a goal configuration.

Another approach for motion planning in a

high-dimensional space is a Learning from

Demonstration (LfD) strategy [3], [4]. In the

LfD, trajectories that a robot should follow

are extracted from human demonstrations and

those are used as data for encoding motions

and they are used for a motion planning.

The advantage of the LfD method is that it

can find a motion planning solution that is

suitable to a task in a short time.

A. Ude and et al. [5] suggested LfD

method for various general tasks. In [5],

trajectories demonstrated by a human are

encoded by Dynamic Motion Primitives

(DMPs) [6], [7]. The method was extended in

[8] for real-time motion planning. Although

the method successfully generates a motion

when a query point is similar to learned

trajectories, it has a limitation when

additional constraints such as an obstacle

avoidance, a velocity limitation, and a short

distance constraints are added. Even though

frameworks for the LfD for dealing with

constraints were suggested in [9]–[11], they

only consider a few numbers of constraints

and setting for the constraints is not

tractable.

In this paper, we combine LfD and Particle

Swarm Optimization [12], [13] for adaptation

of trajectory to a task. Although those two

methods can be used independently, their

advantages can be utilized when those

methods are combined. Amounts of

modification for a trajectory generated from

the LfD is encoded into a parameter and it is

optimized with PSO. The final trajectory

becomes suitable for a task and adapts for

constraints. The proposed method follows

similar procedure shown in [15] and

improves adaptation performance by using

PSO which is a stochastic global optimization

method.

The paper is organized as follows. In

section 2, combination method of LfD and

PSO are provided. In section 3, the

simulation setup is addressed and results of

the proposed method is analyzed. Finally

concluding remarks and discussion are

provided in section 4.

2. Combination of Learning from

Demonstration and Particle Swarm

Optimization

2.1 Generalization of DMPs for LfD

In this section, LfD framework that is used

in the paper is briefly summarized. LfD

169

운동계획을 위한 입자 군집 최적화를 이용한 시범에 의한 학습의 적응성 향상

method proposed by Ude and et al. [5] is

applied to proposed method because it shows

a good generalization property and have been

applied to many real-world applications.

The procedure for the generalization of

DMPs consists of two stages. The first stage

is a data collection stage for learning and the

second stage is a trajectory generalization

stage for motion planning. In the data

collection stage, trajectories that should be

followed are collected from human

demonstrations and the set of trajectories

consists of the

  








 

  ⋯  ⋯
 (1)

where 








 , and qk

are measured positions, velocities, and

acceleration on trajectory k, number of

examples, number of sampling points on

each trajectory, parameters describing a task.

Here, the qk is used as query points and a

structure of the DMPs is determined by these

parameters. DMPs are specified by the

weighting factor w, time constant τ, and

goal point g and relations between q and (w,

τ, g) are learned with the data set Z,

G(Z) : q → [wT,τ,g]T.

Gaussian process regression (GPR) [16] is

used for estimating τ and g and Locally

Weighted Regression (LWR) [17] is used for

estimating the w. For a new query point q,

it is used as an input of GPR and LWR and

time constant τ and goal point g are

generated from GPR, and weighting factor w

is generated from LWR. DMPs are

constructed based on the parameters.

In [8], the original generalization of DMP

was referred as Raw Trajectories

Generalization (RTG) and the modified

generalization of DMP was referred as

Movement Primitives Generalization (MPG).

The DMP parameters τ and g are estimated

with GPR and w is estimated with LWR in

RTW and τ, g, and w are estimated with

GPR in MPG. A DMP is corresponded to

each joint and DMPs are used to generate a

trajectory. The joint trajectories for each time

are generated with the DMPs and the

position of the end-effector is obtained by

kinematics. In this paper, the MPG is used

for generating a trajectory of LfD.

2.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a

population based stochastic optimization

method inspired by social behavior in a

nature such as bird flocking or fish schooling

[12], [13]. The PSO uses a concept called a

particle and a swarm. A particles is

corresponding to an animal, a bird, and an

insect in a herd, a flock, and a swarm

respectively. Each particle has own position

and velocity and they are randomly initialized

in a search space. When number of particles

in a swarm is S and each particle has a D

dimensional vector at iteration i, positions

and the velocities of particles are represented

as (2) and (3) respectively.

     ⋯     (2)

170 한국산업융합학회 논문집 제19권 제4호

     ⋯     (3)

where Xi(s) and Vi(s) are D dimensional

vectors.

As increase an iteration, the particles

cooperate and finally reach a solution by

preserving and sharing their previous best

position. Particles store their best experience

during optimization process and velocity and

position of each particle are updated by (4)

and (5) respectively.

     

   
 (4)

      (5)

where Vi(s) is a velocity and Xi(s) is a

position of a particle at i iteration. And pbest

is a previous best position for each particle

and lbest is a best position of the local

particle obtained so far. ϕ1 and ϕ2 are

determined as ϕ1 = rand(0, c1), ϕ2 = rand(0,

c2) and c1 is a cognition learning factor and

c2 is a social learning factor.

The optimization procedure of the PSO is

summarized in Algorithm 1. First, the velocity

and position of particles are initialized in the

search space. And then each particle is

evaluated and positions of particle are

updated until the max iteration.

R. A. Krohling [14] suggested velocity

update equation based on the Gausssian

distribution random number generator in PSO

and named it as Gaussian Swarm. It does

not require PSO cognition learning factor c1

and social learning factor c2 and converges

faster than canonical PSO. The velocity

change equation of Gaussian Swarm is (6)

     

   
 (6)

where |randn| is a positive random number

generated according to the absolute value of

the normal distribution, i.e., abs[N(0,1)].

2.3 Trajectory modification vector for

Learning from Demonstration

In the case of the time duration between a

start point and a goal point is T and

sampling time is dt, number of steps of the

trajectories is N = T/dt. The amount of

trajectories modification for each step is

optimized with PSO. When a trajectory

generated from LfD is Plfd(t) and modification

171

운동계획을 위한 입자 군집 최적화를 이용한 시범에 의한 학습의 적응성 향상

amount is Pmod(t), the final trajectory P(t)

for an execution is represented as

  mod for  …×

   for    and  ×

(7)

P(t) can be a trajectories in Cartesian space

or in joints space. When n = t/dt is set,

above equations are changed to

  mod for   …

   for   and 

(8)

The procedure for adapting the trajectory

for constraints are shown in Fig. 1. The

optimization algorithm, PSO, optimizes the

P[n]mod and the final trajectory P[n] is

obtained by combining P[n]lfd and P[n]mod.

2.4 Fitness function for optimization

A fitness function to be minimized has a

following form.

  
  



 (9)

where Consti(·) are functions that represent

each constraints, Wi are weighting factors

that balance the relative importance of each

constraint and NC is the number of

constraints.

The first constraint minimizes the

modifications to a trajectory and has the

form

min 




  
  





mod
 

f or  …

(10)

A trajectory generated from the LfD should

be modified as small as possible to make a

trajectory that is similar to a demonstration

because the demonstrated trajectory is

suitable for a task.

The second constraint is for minimum

acceleration and has the form

min  

for  …

 (11)

where the function |acc(p)| is the

Fig. 1. The procedure for adapting a trajectory for
constraints. The final trajectory is combination
of a trajectory generated from LfD and a
modification amount optimized with PSO.

magnitude of the acceleration for a step and

can be calculated with finite differences. The

finite difference equation for each dimension

is

 


 


(12)

172 한국산업융합학회 논문집 제19권 제4호

In this study, dt is set as 1 and acc(P[n])

is calculated for each dimension of the

workspace. Usually, minimizing the

acceleration is important for saving energy

and avoiding a sudden change in the motion.

 The third constraint is for avoiding

obstacles and has a following form

 
 



 

f or  …

(13)

where Obs[o] is the location of the center of

the obstacle, R[o] is the radius of the

obstacle o, O is the number of obstacles,

Rsafe is the radius for a safe margin and the

function δ(a1,a2) is an activation function

whose value is 1 when a2 is less than a1 and

0 otherwise. In this paper, we assume that

obstacles are static and approximated with

compositions of spheres.

The final objective function to be

optimized is

 
 













minmin
minmin












(14)

The final fitness function is the sum of the

fitness value for steps between 0 and N −
1.

3. Simulations

3.1 Simulation setting

In this section, proposed method is verified

by simulations. The simulations are aim for

reaching task with an arm-type manipulator

which is basic in motion planning. Various

tasks such as pick and place task can be

utilized based on the task. For implementing

a LfD framework, we selected Movement

Primitives Generalization (MPG) [8] that can

be used for a real-time trajectory generation.

For the simulation, the trajectories that

start from an initial position and move to

final positions were generated and those

were used for learning MPG. The robot being

simulated is shown in Fig. 2. The values of

the parameters in the figure were L1 = 1.7

cm, L2 = 1.7 cm, L3 = 6.7 cm and L4 = 10

cm. The parameters of the DMP for MPG are

Ndmp= 20, βz= 1, αz= 4βz, and αx= 0.1.

Sampling time is dt = 0.01s, trajectory end

time is T = 0.5s, and number for the

trajectory segment is N = 50. We generated

75 minimum jerk trajectories [18] in the joint

space that have zero velocity and

acceleration at the start point and goal point.

Fig. 2. Kinematic model of the robot arm. The robot
has 3 joints and 4 links. The first joint rotates
about the y-axis, and the second and third
joints rotate about the x-axis.

173

운동계획을 위한 입자 군집 최적화를 이용한 시범에 의한 학습의 적응성 향상

Final positions in Cartesian coordinate are

set as query points. The query point in x

axis are located from 12 cm to 16 cm and y

and z axis are located from −4.0 cm to 4.0

cm and the step for each point is set as 2

cm. The query points in Cartesian space are

shown in Fig. 3.

Fig. 3. Query point for learning MPG. Each trajectory
starts from an initial position and reach a
goal point that is used for a query point.
Total number of query point is 75.

Fig. 4. Trajectory with collision before an adaptation.

The circles in Fig. 3 are query points and

there are 75 points. Those trajectories are

used for learning the MPG. Obstacles were

located at (15.0,−1.0,−5.0) cm and (10.0,−

2.0,−14.0) cm and their radius are 4 cm and

2 cm respectively. When a query point is

(12.0,−4.0,4.0) cm, a trajectory collides with

the obstacles as shown in Fig. 4. In this

case, the adaptation should be conducted.

Number of the iteration for PSO was set

as 200 and number of particles was set as

100. The initial particles were initialized with

normal distribution N(0, 0.012). The weight

parameters were set as Wminacc=Wminmod=10

and Wobsavo=1000. The safe margin Rsafe was

set as 0.1. In this setting, PSO tries to

minimize the fitness function.

3.2 Simulation result

The result of the trajectory adaptation with

PSO in three dimensional space is shown in

Fig. 5. The trajectory avoided obstacles and

reached the goal. The initial trajectory,

trajectory modification amount, and final

trajectory in each axis are shown in Fig. 6.

The steps that violate constraints are

optimized and a final trajectory was modified.

The fitness value for each iteration is shown

in Fig. 7. As shown in Fig. 7, the fitness

value was continuously decreased as iteration

goes. The initial fitness value was 7935.99

and final fitness value was 299.92. It was

reduced for adapting constraints.

4. Conclusion

In this paper, adaptation method for LfD

with PSO was proposed. A trajectory

174 한국산업융합학회 논문집 제19권 제4호

generated from an LfD was modified with

PSO. The final trajectory was suitable for task

because it was adapted for a constraints. The

simulations for generating a trajectory that

reaches a goal point in three dimensional

space with a robot were conducted. The

proposed algorithm successfully modified a

trajectory to adapt to constraints and could

improve the adaptability of the LfD.

Fig. 5. Trajectory adaptation result. The optimizer
modified an orignal trajectory generated
from MPG and avoided obstacles.

Fig. 7. fitness value for each iteration.

References

[1] S. M. LaValle, “Rapidly-exploring

random trees: A new tool for path

planning,” TR 98-11, Computer Science

Dept., Iowa State University, 1998.

[2] S. M. LaValle, “Planning algorithms,”

Cambridge University Press, 2006.

[3] A. Billard, S. Calinon, R. Dillmann,

S.Schaal, “Robot programming by

Demonstration,” Handbook of Robotics,

Springer, pp. 1371-1394, 2008.

[4] B. D. Argall, S. Chernova, M. Veloso,

and B. Browning, “A survey of robot

learning from demonstration,” Robotics

and Autonomous Systems, vol. 57, no.

5, pp. 469-483, 2009.

[5] A. Ude, A. Gams, T. Asfour, J.

Morimoto, “Task-Specific generalization

of discrete and periodic dynamic

movement primitives,” IEEE Tran. on

Robotics, vol. 26, no. 5, 2010.

[6] A. J. Ijspeert, J. Nakanishi, and S.

Schaal, “Movement imitation with

nonlinear dynamical systems in

humanoid robots,” in Proc. IEEE Int.

Conf. Robot. Autom., pp. 1398-1403,

2002.

[7] A. J. Ijspeert, J. Nakanishi, and S.

Schaal, “Learning rhythmic movements

by demonstration using nonlinear

oscillators,” in Proc. IEEE/RSJ Int. Conf.

Intell. Robots Syst., pp. 958-963, 2002.

[8] D. Forte, A. Gams, J. Morimoto, A. Ude,

“On-line motion synthesis and

adaptation using a trajectory database,”

Robotics and Autonomous Systems, vol.

175

운동계획을 위한 입자 군집 최적화를 이용한 시범에 의한 학습의 적응성 향상

60, pp. 1327-1339, 2012.

[9] S. Calinon, F. Guenter, and A. Billard,

“On learning, representing, and

generalizing a task in a humanoid

robot,” IEEE Trans. on Systems, Man,

and Cyber., Part B: Cyber., vol. 37 pp.

286-298, 2007.

[10] S. Calinon, and A. Billard, “A

probabilistic programming by

demonstration framework handling

constraints in joint space and task

space,” in Proc. IEEE/RSJ Int. Conf.

Intell. Robots Syst., pp. 367-372, 2008.

[11] S. Calinon, F. D’halluin, D. G.

Caldwell, and A. Billard, 2009,

“Handling of multiple constraints and

motion alternatives in a robot

programming by demonstration

framework,” in Proc. IEEE/RAS Int.

Conf. Humanoids, pp. 582-588, 2009

[12] J. Kennedy, R. Eberhart, “Particle

swarm optimization,” Proc. of the IEEE

Int. Conf. on Neural Networks, vol. 4,

pp. 1942-1948, 1995.

[13] A. Abraham, H. Guo, and H. Liu,

“Swarm intelligence: foundations,

perspectives and applications,” Stu. in

Compu. Inte., Springer, vol 26, pp.

3-25, 2006.

[14] R. Krohling, “Gaussian swarm: a novel

particle swarm optimization algorithm,”

IEEE Conf. on Cyber. and Int. Sys.,

vol. 1, pp. 372-376, Dec. 2004.

[15] J.-J Kim, S.-Y. Park, and J.-J. Lee,

“Adaptability improvement of learning

from demonstration with sequential

quadratic programming for motion

planning,” IEEE Conf. on Adv. Int.

Mech., pp. 1032-1037, 2015.

[16] C. E. Rasmussen and C. K. I. Williams,

“Gaussian processes for machine

learning,” MIT Press, 2006.

[17] C. G. Atkeson, A.W. Moore, and S.

Schaal, “Locally weighted learning,”

Artif. Intell. Rev., vol. 11, pp. 75-113,

1997.

[18] T. Flash, N. Hogan, “The coordination

of arm movements: an experimentally

confirmed mathematical model,” The

Journal of Neuroscience, vol. 5, no. 7,

pp. 1688-1703, 1985.

(접수:2016.09.12.,수정:2016.10.10, 개제확정:2016.11.01)

