• Title/Summary/Keyword: Partial control

Search Result 1,588, Processing Time 0.024 seconds

Control of Electromagnetic Levitation System using ε-scaling Partial State Feedback Controller (ε조절 요소를 가진 부분 상태 궤환 제어기를 이용한 자기부상 시스템의 제어)

  • Park, Gyu-Man;Choi, Ho-Lim
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.8
    • /
    • pp.1572-1576
    • /
    • 2011
  • The electromagnetic levitation(EMS) system is one of the well-known nonlinear system because of its nonlinearity and several control techniques have been proposed. We propose an ${\epsilon}$-scaling partial feedback controller for the ball position control of the EMS system. The key feature of our proposed controller is the use of the scaling factor ${\epsilon}$ which provides a function of controller gain tuning along with robustness. In this paper, we show the stability analysis of our proposed controller and the convergence analysis of the state observer in terms of ${\epsilon}$-scaling factor. In addition, the experimental results show the validity of the proposed controller and improved control performance over the conventional PID controller.

Model Reference Adaptive Control of a Flexible Structure

  • Yang, Kyung-Jinn;Hong, Keum-Shik;Rhee, Eun-Jun;Yoo, Wan-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1356-1368
    • /
    • 2001
  • In this paper, the model reference adaptive control (MRAC) of a flexible structure is investigated. Any mechanically flexible structure is inherently distributed parameter in nature, so that its dynamics are described by a partial, rather than ordinary, differential equation. The MRAC problem is formulated as an initial value problem of coupled partial and ordinary differential equations in weak form. The well-posedness of the initial value problem is proved. The control law is derived by using the Lyapunov redesign method on an infinite dimensional filbert space. Uniform asymptotic stability of the closed loop system is established, and asymptotic tracking, i. e., convergence of the state-error to zero, is obtained. With an additional persistence of excitation condition for the reference model, parameter-error convergence to zero is also shown. Numerical simulations are provided.

  • PDF

Development of partial state feedback control algorithm for nonlinear overhead crane whose two axes are moved simultaneously (두 축이 동시에 운동하는 비선형 천장 크레인의 부분상태 궤환제어 알고리즘 개발)

  • 이종규;이상룡
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.395-398
    • /
    • 1996
  • In this study, when the nonlinear overhead crane which allows simultaneously travel and traverse motion moves a desired transport route, the object suspended the end of rope does undesirable swing motion. Nonlinear overhead crane pertubes in the vicinity of an operating point, therefore the nonlinear overhead crane is modified to linear overhead crane for the operating point. The linear overhead crane was controlled to swing angles of the object by the ratio of torque inputs to motors of the girder and the trolley. As a basis for the result of the linear overhead crane, the nonlinear overhead crane was controlled swing angles of the object and positions of the overhead crane without collision with environmental equipment by partial state feedback control.

  • PDF

A NEW APPROACH TO SOLVING OPTIMAL INNER CONTROL OF LINEAR PARABOLIC PDES PROBLEM

  • Mahmoudi, M.;Kamyad, A.V.;Effati, S.
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.719-728
    • /
    • 2012
  • In this paper, we develop a numerical method to solving an optimal control problem, which is governed by a parabolic partial differential equations(PDEs). Our approach is to approximate the PDE problem to initial value problem(IVP) in $\mathbb{R}$. Then, the homogeneous part of IVP is solved using semigroup theory. In the next step, the convergence of this approach is verified by properties of one-parameter semigroup theory. In the rest of paper, the original optimal control problem is solved by utilizing the solution of homogeneous part. Finally one numerical example is given.

THE h × p FINITE ELEMENT METHOD FOR OPTIMAL CONTROL PROBLEMS CONSTRAINED BY STOCHASTIC ELLIPTIC PDES

  • LEE, HYUNG-CHUN;LEE, GWOON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.4
    • /
    • pp.387-407
    • /
    • 2015
  • This paper analyzes the $h{\times}p$ version of the finite element method for optimal control problems constrained by elliptic partial differential equations with random inputs. The main result is that the $h{\times}p$ error bound for the control problems subject to stochastic partial differential equations leads to an exponential rate of convergence with respect to p as for the corresponding direct problems. Numerical examples are used to confirm the theoretical results.

$H_{\infty}$ control of 2-mass system using partial state feedback and resonance ratio control (부분적인 상태궤환과 공진비제어를 이용한 2관성계의 $H_{\infty}$제어)

  • Kim, Jin-Soo;Lee, Hoon-Goo;Shin, Jae-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.53-57
    • /
    • 2001
  • In the industrial motor drive system which is composed of a motor and load connected with a flexible shaft, a torsional vibration is often generated because of the elastic elements in torque transmission. To solve this problem, the two degrees of freedom $H_{\infty}$ controller was designed. But it is difficult to realize that controller. In this paper, $H_{\infty}$ control of 2-mass system using partial state feedback and resonance ratio control is proposed. Proposed controller has simple structure but satisfies the attenuation of disturbances and vibrations.

  • PDF

Anti-swing of the Nonlinear Overhead Crane Using Partial State Feedback Control (부분상태 궤환제어를 이용한 비선형 천정크레인의 진자각제어)

  • Lee, Jong-Kyu;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.907-917
    • /
    • 1997
  • The purpose of this study is to design an anti-sway motion for industrial overhead cranes which transport objects on a horizontal plane by adjusting movements of a trolley motor and a girder motor. The movement of a hoist motor has not been considered at this time since its role was assumed to move objects only vertically, therefore, not to affect the swing motion of objects. The dynamic behavior of the swing motion shows nonlinear characteristics, which makes the design of anti-sway motion controller difficult. First of all, the nonlinear state equation for the motion of industrial overhead cranes has been derived. Then they have been linearized about normal operating states determined by the dynamic characteristics of motor motion-acceleration, constant speed, and deceleration, and deceleration, during transportation. The partial state feedback control algorithm based on this linearized state equation has been developed on order to suppress the swing motion. The simulation results have demonstrated satisfactory performance of the proposed controller.

Robust decentralized control of structures using the LMI Hcontroller with uncertainties

  • Raji, Roya;Hadidi, Ali;Ghaffarzadeh, Hosein;Safari, Amin
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.547-560
    • /
    • 2018
  • This paper investigates the operation of the $H_{\infty}$ static output-feedback controller to reduce dynamic responses under seismic excitation on the five-story and benchmark 20 story building with parametric uncertainties. Linear matrix inequality (LMI) control theory is applied in this system and then to achieve the desired LMI formulations, some transformations of the LMI variables is used. Conversely uncertainties due to material properties, environmental loads such as earthquake and wind hazards make the uncertain system. This problem and its effects are studied in this research. Also to decrease the transition of large amount of data between sensors and controller, avoiding the disruption of whole control system and economy problems, the operation of the decentralized controllers is investigated in this paper. For this purpose the comparison between the performance of the centralized, fully decentralized and partial decentralized controllers in uncoupled and coupled cases is performed. Also, the effect of the changing the number of stories in substructures is considered. Based on the numerical results, the used control algorithm is very robust against the parametric uncertainties and structural responses are decreased considerably in all the control cases but partial decentralized controller in coupled form gets the closest results to the centralized case. The results indicate the high applicability of the used control algorithm in the tall shear buildings to reduce the structural responses and its robustness against the uncertainties.

Web based General Partial Differential Equation Solver using Multidimensional Finite Element Method - I. Model Development - (다차원 유한요소법을 이용한 웹 기반의 범용적 편미분 방정식 해석 모형의 개발 및 적용 - I. 모형의 개발 -)

  • Kim, Joon-Hyun;Han, Young-Han
    • Journal of Environmental Impact Assessment
    • /
    • v.10 no.4
    • /
    • pp.319-326
    • /
    • 2001
  • This study is aimed at the development of a comprehensive web-based partial differential equation solver (WPDES) using multidimensional finite element method, which can be operated on the basis of world wide web. Overall issues of engineering and environmental information management and facility control could be implemented using this solver. This paper describes the development technique of the model, which is first part on development of partial differential equation solver. Conventional commercial general solver of computational fluid dynamics problems were investigated. All the relevant environmental models were analyzed to develop integrated environmental management system using WPDES. The governing equations and the parameters of investigated models were analyzed and integrated. Several numerical modules were invented for each partial differential term in partial differential equation of many related modeling problems. Each module was coded in the fashion of object oriented method, and was combined independently for the overall governing equation. WPDES has unique characteristic, which can analyze the problem through the suitable combination of modules without development of additional models for each environment problem with different governing equation, main variables, and parameters.

  • PDF

Fracture Analysis of Thick Plate for Partial Penetration Multi-pass Weldment Using J-integral (J-적분을 이용한 후판 부분용입 다층용접재의 파괴 해석)

  • Kim, Seok;Song, Jung-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.300-307
    • /
    • 2002
  • Partial penetration welding joint is defined as groove welds welded from one side, without steel backing or groove welds welded from both sides but without back gouging. So it has an unwelded portion at the root of the weld. Study of partial penetration weldment fracture behavior includes residual stress analysis and fracture analysis. The J-integral loses its path independency in residual stress field. Therefore, it is necessary to introduce a new J-integral, J, which is defined including the effect of plastic deformation and thermal strain. In this study, theoretical formulation and program were developed for the evaluation of J-integral for the crack tip located in the weldment. Evaluations of fracture behavior were performed for partial penetration multi-pass weldment of 25.4mm thick plate by J-integral. From a point of fracture in partial penetration multi-pass welding, it seemed to be better to control root face smaller than 6.35mm.