DOI QR코드

DOI QR Code

Robust decentralized control of structures using the LMI Hcontroller with uncertainties

  • Raji, Roya (Department of Civil engineering, University of Tabriz) ;
  • Hadidi, Ali (Department of Civil engineering, University of Tabriz) ;
  • Ghaffarzadeh, Hosein (Department of Civil engineering, University of Tabriz) ;
  • Safari, Amin (Department of Elecrtical Engineering, Azarbaijan Shahid Madani University)
  • Received : 2017.11.15
  • Accepted : 2018.10.30
  • Published : 2018.11.25

Abstract

This paper investigates the operation of the $H_{\infty}$ static output-feedback controller to reduce dynamic responses under seismic excitation on the five-story and benchmark 20 story building with parametric uncertainties. Linear matrix inequality (LMI) control theory is applied in this system and then to achieve the desired LMI formulations, some transformations of the LMI variables is used. Conversely uncertainties due to material properties, environmental loads such as earthquake and wind hazards make the uncertain system. This problem and its effects are studied in this research. Also to decrease the transition of large amount of data between sensors and controller, avoiding the disruption of whole control system and economy problems, the operation of the decentralized controllers is investigated in this paper. For this purpose the comparison between the performance of the centralized, fully decentralized and partial decentralized controllers in uncoupled and coupled cases is performed. Also, the effect of the changing the number of stories in substructures is considered. Based on the numerical results, the used control algorithm is very robust against the parametric uncertainties and structural responses are decreased considerably in all the control cases but partial decentralized controller in coupled form gets the closest results to the centralized case. The results indicate the high applicability of the used control algorithm in the tall shear buildings to reduce the structural responses and its robustness against the uncertainties.

Keywords

References

  1. Askari, M., Li, J. and Samali, B. (2016), "Semi-active control of smart building-MR damper systems using novel TSK-Inv and max-min algorithms", Smart Struct. Syst., 18(5), 1005-1028. https://doi.org/10.12989/sss.2016.18.5.1005
  2. Bakule, L. (2008), "Decentralized control: An overview", J. Annu. Rev. Control, 32(3), 87-98. https://doi.org/10.1016/j.arcontrol.2008.03.004
  3. Beheshti-Aval, S.B and Lezgy-Nazargah, M. (2010), "Assessment of velocity-acceleration feedback in optimal control of smart piezoelectric beams", Smart Struct. Syst., 6(8), 921-938. https://doi.org/10.12989/sss.2010.6.8.921
  4. Braz-Cesar, M.T. and Barros, R.C. (2018), "Semi-active fuzzy based control system for vibration reduction of a SDOF structure under seismic excitation", Smart Struct. Syst., 21(4), 389-395. https://doi.org/10.12989/SSS.2018.21.4.389
  5. Cao, Z. and Lei, Z. (2014), "Feedback control design for intelligent structures with closely-spaced eigenvalues", Struct. Eng. Mech., 52(5), 903-918. https://doi.org/10.12989/sem.2014.52.5.903
  6. Cao, Z., Wen, B. and Kuang, Z. (2003), "feedback control of intelligent structures with uncertainties and its robustness analysis", Struct. Eng. Mech., 16(3), 327-340. https://doi.org/10.12989/sem.2003.16.3.327
  7. Cha, Y.J. and Agrawal, A.K. (2013), "Decentralized output feedback polynomial control of seismically excited structures using genetic algorithm", Struct. Control Health Monit., 20(3), 241-258. https://doi.org/10.1002/stc.486
  8. Chen, B. and Nagarajaiah, S. (2008), "Structural damage detection using decentralized controller design method", Smart Struct. Syst., 4(6), 779-794. https://doi.org/10.12989/sss.2008.4.6.779
  9. Cheng, F.Y., Jiang, H. and Lou, K. (2008), Smart Structures: Innovative Systems for Seismic Response Control, Taylor & Francis Group, United States of America.
  10. Chu, S.Y., Yeh, S.W., Lu, L.Y. and Peng, C.H. (2017), "Experimental verification of leverage-type stiffness-controllable tuned mass damper using direct output feedback LQR control with time-delay compensation", Earthq. Struct., 12(4), 425-436. https://doi.org/10.12989/eas.2017.12.4.425
  11. Dhanalakshmi, K., Umapathy, M., Ezhilarasi, D. and Bandyopadhyay, B. (2011), "Design and implementation of fast output sampling feedback control for shape memory alloy actuated structures", Smart Struct. Syst., 8(4), 367-384. https://doi.org/10.12989/sss.2011.8.4.367
  12. Du, H., Zhang, N., Samali, B. and Naghdy, F. (2012), "Robust sampled-data control of structures subject to parameter uncertainties and actuator saturation", Eng. Struct., 36, 39-48. https://doi.org/10.1016/j.engstruct.2011.11.024
  13. Ghaffarzadeh, H. and Aghabalaei, K. (2017), "Adaptive fuzzy sliding mode control of seismically excited structures", Smart Struct. Syst., 19(5), 577-585. https://doi.org/10.12989/sss.2017.19.5.577
  14. Ghaffarzadeh, H. (2013), "Semi-active structural fuzzy control with MR dampers subjected to near-fault ground motions having forward directivity and fling step", Smart Struct. Syst., 12(6), 595-617. https://doi.org/10.12989/sss.2013.12.6.595
  15. Giron, N. and Kohiyama, M. (2014), "A robust decentralized control method based on dimensionless parameters with practical performance criterion for building structures under seismic excitations", Struct. Control Health Monit., 21(6), 907-925. https://doi.org/10.1002/stc.1621
  16. Housner, G.W., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F., Skelton, R.E., Soong, T.T., Spencer, B. F. and Yao, J.T.P. (1997), "Structural control: past, present, and future", J. Eng. Mech., 123(9), 897-971. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897)
  17. Jiang, J. and Li, D. (2011), "Decentralized robust vibration control of smart structures with parameter uncertainties", J. Intel. Mat. Syst. Str., 22(2), 137-147. https://doi.org/10.1177/1045389X10391496
  18. Johansen, Jeremy David. (2008), "Active control of frame structures: a decentralized approach", Ph.D. Dissertation; University of California, California.
  19. Kohiyama, M. and Yoshida, M. (2014), "LQG design scheme for multiple vibration controllers in a data center facility", Earthq. Struct., 6(3), 281-300. https://doi.org/10.12989/eas.2014.6.3.281
  20. Korkmaz, S. (2011), "A review of active structural control: challenges for engineering informatics", Comput. Struct., 89(23), 2113-2132. https://doi.org/10.1016/j.compstruc.2011.07.010
  21. Lei, Y., Wu, D.T. and Liu, L.J. (2013), "A decentralized structural control algorithm with application to the benchmark control problem for seismically excited buildings", Struct. Control Health Monit., 20(9), 1211-1225. https://doi.org/10.1002/stc.1529
  22. Lei, Y. and Lin, Y. (2009), "New decentralized control technique based on substructure and LQG approaches, front", J. Mech. Eng. China, 4(4), 386-392.
  23. Lei, Y., Wu, D.T. and Lin, Y. (2012), "A decentralized control algorithm for large-scale building structures", J. Comput.-Aided Civil Infrastruct. Eng., 27(1), 2-13. https://doi.org/10.1111/j.1467-8667.2010.00707.x
  24. Lei, Y., Wu, D.T. and Lin, S.Z. (2013), "Integration of decentralized structural control and the identification of unknown inputs for tall shear building models under unknown earthquake excitation", Eng. Struct., 52, 306-316. https://doi.org/10.1016/j.engstruct.2013.02.012
  25. Lim, C.W., Park, Y.J. and Moon, S.J. (2006), "Robust saturation controller for linear time-invariant system with structured real parameter uncertainties", J. Sound Vib., 294(1-2), 1-14. https://doi.org/10.1016/j.jsv.2005.10.020
  26. Loh, C.H. and Chang, C.M. (2008), "Application of centralized and decentralized control to building structure: analytical study", J. Eng. Mech., 134(11), 970-982. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:11(970)
  27. Lynch, J.P. and Law, K.H. (2002), "Decentralized control techniques for large-scale civil structural systems", Proceedings of the 20th International Modal Analysis Conference, Los Angeles.
  28. Lynch, J.P. and Law, K.H. (2004), "Decentralized energy marketbased structural control", Struct. Eng. Mech., 17(3), 557-572. https://doi.org/10.12989/sem.2004.17.3_4.557
  29. Ma, T.W., Johansen, J., Xu, N. and Yang, H.T.Y. (2010), "Improved decentralized method for control of building structures under seismic excitation", J. Eng. Mech., 136(5), 662-673. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000104
  30. Ma, T.W., Xu, N.S. and Tang, Y. (2008), "Decentralized robust control of building structures under seismic excitations", Earthq. Eng. Struct. D., 37(1), 121-140. https://doi.org/10.1002/eqe.748
  31. Manjunath, T.C. and Bandyopadhya, B.Y. (2005), "Modeling and fast output sampling feedback control of a smart Timoshenko cantilever beam", Smart Struct. Syst,, 1(3), 283-308. https://doi.org/10.12989/sss.2005.1.3.283
  32. Rubio Massegu, J., Quinonero Palacios, F. and Rossell, J.M. (2012), "Decentralized static output-feedback H controller design for buildings under seismic excitation", Earthq. Eng. Struct. D., 41(7), 1199-1205. https://doi.org/10.1002/eqe.1167
  33. Materazzi, A.L. and Ubertini, F. (2012), "Robust structural control with system constraints", Struct. Control Health Monit., 19(3), 472-490. https://doi.org/10.1002/stc.447
  34. Morales, A.L., Rongong, J.A. and Sims, N.D. (2012), "A finite element method for active vibration control of uncertain structures", Mech. Syst. Signal Pr., 32, 79-93. https://doi.org/10.1016/j.ymssp.2011.09.027
  35. Muthalif, A.G.A., Kasemi, H.B., Diyana Nordin, N.H., Rashid, M.M., Razali, M. and Khusyaie, M. (2017), "Semi-active vibration control using experimental model of magnetorHeological damper witH adaptive F-PID controller", Smart Struct. Syst., 20(1), 85-97. https://doi.org/10.12989/SSS.2017.20.1.085
  36. Pozo, F., Pujol, G. and Acho, L. (2016), "Vibration control of hysteretic base-isolated structures: an LMI approach", Smart Struct. Syst., 17(2), 195-208. https://doi.org/10.12989/sss.2016.17.2.195
  37. Preumont, A. and Seto, K. (2008), Active Control Of Structures, John Wailey & Sons, Ltd, Chichester,West Sussex, United Kingdom.
  38. Qu, C., Huo, L., Li, H. and Wang, Y. (2013), "A double homotopy approach for decentralized $H_{\infty}$ control of civil structures", Struct. Control Health Monit., 21(3), 269-281. https://doi.org/10.1002/stc.1552
  39. Palacios Quinonero, F., Rubio Massegu, J., Rossell, J.M. and Karimi, H.R. (2014), "Recent advances in static output-feedback controller design with applications to vibration", J. Model., Identification Control, 35(3), 169-190. https://doi.org/10.4173/mic.2014.3.4
  40. Ruiz-Sandoval, M.E. and Morales, E. (2013), "Complete decentralized displacement control algorithm", Smart Struct. Syst., 11(2), 135-161. https://doi.org/10.12989/sss.2013.11.2.135
  41. Schmitendorf, W.E., Jabbari, F. and Yang, J.N. (1994), " Robust control techniques for buildings under earthquake excitation", Earthq. Eng. Struct. D., 23(5), 539-552. https://doi.org/10.1002/eqe.4290230506
  42. Tu, J., Lin, X., Tu, B., Xu, J. and Xu, D. (2014), "Simulation and experimental tests on active mass damper control system based on model reference adaptive control algorithm", J. Sound Vib., 333(20), 4826-4842. https://doi.org/10.1016/j.jsv.2014.05.043
  43. Ubertini, F. (2008), "Active feedback control for cable vibrations", Smart Struct. Syst., 4(4), 407-428. https://doi.org/10.12989/sss.2008.4.4.407
  44. Wang, S.G., Roschke, P.N. and Yeh, H.Y, (2004), "Robust control for structural systems with unstructured uncertainties", J. Eng. Mech., 130(3), 337-346. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:3(337)
  45. Wang, Y., Lynch, J.P. and Law, K.H. (2009), "Decentralized $H_{\infty}$ controller design for large-scale civil structures", Earthq. Eng. Struct. D., 38(3), 377-401. https://doi.org/10.1002/eqe.862
  46. Wang, Y., Swartz, R.A. and Lynch, J.P., Law, K.H., Lu, K.C. and Loh, C.H. (2007), "Decentralized civil structural control using real-time wireless sensing and embedded computing", Smart Struct. Syst., 3(3), 321-340 https://doi.org/10.12989/sss.2007.3.3.321
  47. Wang, Y. (2011), "Time-delayed dynamic output feedback $H_{\infty}$ controller design for civil structures: A decentralized approach through homotopic transformation", Struct. Control Health Monit., 18(2), 121-139. https://doi.org/10.1002/stc.344
  48. Xu, Y., Li, Z. and Guo, K. (2018), "Active vibration robust control for FGM beams with piezoelectric layers", Struct. Eng. Mech., 67(1), 33-43. https://doi.org/10.12989/SEM.2018.67.1.033
  49. Yan, X.G. and Spurgeon, S.K. (2014), "Decentralised delay-dependent static output feedback variable structure control", J. Franklin Institute, 351(4), 2033-2047. https://doi.org/10.1016/j.jfranklin.2013.06.003
  50. Younespour, A. and Ghaffarzadeh, H. (2016), "Semi-active control of seismically excited structures with variable orifice damper using block pulse functions", Smart Struct. Syst., 18(6), 1111-1123. https://doi.org/10.12989/sss.2016.18.6.1111
  51. Yu, Y., Li, L., Leng, X., Song, G., Liu, Z. and Ou, J. (2017), "A wireless decentralized control experimental platform for vibration control of civil structures", Smart Struct. Syst., 19(1), 47-56. https://doi.org/10.12989/sss.2017.19.1.047
  52. Zhang, H., Wang, R., Wang, J. and Shi, Y. (2014), "Robust finite frequency $H_{\infty}$ static-output-feedback control with application to vibration active control of structural systems", J. Mechatronics, 24(4), 354-366. https://doi.org/10.1016/j.mechatronics.2013.07.013