• Title/Summary/Keyword: Parallel Control

Search Result 2,129, Processing Time 0.031 seconds

A Parallel Inverter System with an Instantaneous Power Balance Control (순시전력 균형제어를 이용한 병렬 인버터 시스템)

  • Sun, Young-Sik;Lee, Chang-Seok;Kim, Si-Kyung;Kim, Chang-Bong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.1
    • /
    • pp.19-28
    • /
    • 2000
  • The parallel inverter is widely utilized because of its fault-tolerance capability, high-current output at constant voltages and system modularity. The conventional paralled inverter usually employes an active and reactive power control or a frequency and voltage droop control. However, these approaches have the disadvantages that the response time of parallel inverter control is slow against load and system parameter variation to calculate active, reactive power, frequency and voltage. This paper describes novel control scheme for equalization of output power between the parallel connected inverters. The proposed scheme has a fast power balance control response, a simplicity of implementation, and inherent peak current limiting capability since it employes a instantaneous current/voltage control with output voltage and current balance and output voltage regulation. A design procedure for the proposed parallel inverter controller is presented. Futhermore, the proposed constrol scheme is verified through the simulation in various cases such as the system parameter variation, the control parameter variation and the nonlinear load condition.

  • PDF

Development of Power Conditioning System Control Algorithm for the Parallel Operation of High-Power Fuel Cell System (대용량 연료전지 시스템의 병렬운전을 위한 전력변환기 제어 알고리즘 개발)

  • Lee, Jin-Hee;Baek, Seung-Taek;Choi, Joon-Young;Suh, In-Young;Kim, Do-Hyung;Lim, Hee-Chun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.65-68
    • /
    • 2008
  • This paper proposes the parallel operation control algorithm of a power conditioning system (PCS) for a distributed Fuel Cell power generation system. A proposed control algorithm is made good a drawback of the conventional control algorithm. The controller must also supervise the total PCS operation while communicating with the fuel cell system controller. Simulation results are presented to performance of a proposed control algorithm for the PCS.

  • PDF

Precise Tracking Control of Parallel Robot using Artificial Neural Network (인공신경망을 이용한 병렬로봇의 정밀한 추적제어)

  • Song, Nak-Yun;Cho, Whang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.200-209
    • /
    • 1999
  • This paper presents a precise tracking control scheme for the proposed parallel robot using artificial neural network. This control scheme is composed of three feedback controllers and one feedforward controller. Conventional PD controller and artificial neural network are used as feedback and feedforward controller respectively. A backpropagation learning strategy is applied to the training of artificial neural network, and PD controller outputs are used as target outputs. The PD controllers are designed at the robot dynamics based on inter-relationship between active joints and moving platform. Feedback controllers insure the total stability of system, and feedforward controller generates the control signal for trajectory tracking. The precise tracking performance of proposed control scheme is proved by computer simulation.

  • PDF

Field Oriented Control in Parallel Operation System of Induction Motors (유도전동기(誘導電動機)의 병렬운전(竝列運轉) System에서의 벡터제어(制御))

  • Kim, Sang-Hoon
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.149-155
    • /
    • 1998
  • This paper describes a reference flux angle selection for a vector control in the parallel operation system that consists of a inverter and several induction motors. In particular, this paper suggests which flux angle of motors prefers for the vector control in the train drive system that diameters of wheels are different. Through simulation for a 210[kW] induction motor drive system, it is clear that the vector control by using of the flux angle of a motor having a minimum wheel diameter leads to a minimum torque difference. However, it requires too many current sensors. So, it is shown that the vector control by a average flux angle of motors is preferable.

  • PDF

A vector control method for parallel connected induction motor (병렬구동 유도전동기 벡터제어 기법)

  • Byun Yeun-Sub;Kim Yong-Kyu;Shin Ducko;Kim Jong-Gi
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.444-449
    • /
    • 2003
  • This paper presents a vector control method for the parallel-connected motor drive system. In this paper new estimation scheme of rotor flux position is presented to reduce sensitivity due to load difference between the motors. To confirm the validity of the proposed control method, we compare a simulation result of the proposed control method with that of the conventional indirect vector control method. The simulation results show that the proposed control method is effective the step change in load torque.

  • PDF

Input Voltage Sharing Control for Input-Series-Output-Parallel DC-DC Converters without Input Voltage Sensors

  • Guo, Zhiqiang;Sha, Deshang;Liao, Xiaozhong
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.83-87
    • /
    • 2012
  • Input-series-output-parallel (ISOP) modular converters consisting of multiple modular DC/DC converters can enable low voltage rating switches for use in high voltage input applications. In this paper, an input voltage sharing control strategy for input-series-output-parallel (ISOP) full-bridge (FB) DC/DC converters is proposed. By sensing the difference in the input current of two modules, the system can achieve input voltage sharing for DC-DC modules. The effectiveness of the proposed control strategy is verified by simulation and experimental results obtained with a 200w-50kHz prototype.

Parallel operating technique for the stand alone PV PCS (독립형 태양광 인버터의 병렬 운전 기법)

  • Jeong, Ku-In;Kwon, Jung-Min
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.6
    • /
    • pp.9-15
    • /
    • 2015
  • In this paper, a parallel operating technique for the stand alone photovoltaic (PV) power conditioning system (PCS) is proposed. The proposed parallel operating technique can increase the power rating of the system easily. Also, it provide three-phase connection function. The proposed technique does not separated master and slave system. Also, it does not use the separated synchronization line. Therefore, the PCS can supply continuous power even if one of the PCS breaks down. This technique is composed of a phase locked loop (PLL) control, droop control, current limit control and etc. Experimental result obtained on 2-kW prototype to verify the proposed technique.

Derivation of Linearized Dynamic Equations of Motion for HexaSlide Type Parallel Manipulators (6 자유도 HexaSlide 형 병렬기구의 선형화된 운동방정식 유도)

  • Kim, Jong-Phil;Ryu, Je-Ha
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.743-750
    • /
    • 2000
  • This paper presents an equivalent linearization method and application to the equations of motion of a 6 degree-of-freedom PRRS HexaSlide type parallel manipulators which are characterized as the architecture with constant link lengths that are attached to moving sliders on the ground and to a mobile platform. Since dynamic equations of parallel manipulators are complicated and highly nonlinear, control bandwidth, adjustable control gain as well as vibration characteristics cannot be easily found. The proposed equivalent linearization method can be applied over specified workspace as well as on a path of mobile platform. Through an equivalent linearization method, one can easily get a simple linear dynamic model. This linearized dynamic model may be utilized in a simplified computed torque control strategy.

  • PDF

Dynamics Analysis and Control of Five Bar Parallel Robot (5-bar 병렬 로봇의 동역학 해석 및 제어)

  • Chung, Young-Hoon;Lee, Jae-Won;Joo, Hae-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.529-535
    • /
    • 2000
  • This paper propose the method to obtain the inverse kinematics and the Jacobian of the 5-bar parallel robot and apply the nonlinear controller to the 5-bar parallel robot with the dynamic analyses using the Jacobian of the Passive joints with respect to the active ones and singular value decomposition(SVD). It also experimentally shows that we can do high-speed and accuracy tasks using nonlinear control method. And it explains the relation between the property of the position control and manipulability using a new performance index.

  • PDF

Development of a Parallel Robot for Testing a Mobile Surveillance Robot Stabilization System (모바일 경계로봇의 안정화 시스템 테스트를 위한 병렬로봇의 개발)

  • Kim, Do-Hyun;Kwon, Jeong-Joo;Kim, Sung-Soo;Choi, Hee-Byoung;Park, Sung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.735-738
    • /
    • 2008
  • A 6 D.O.F Stewart platform type parallel robot has been developed as a simulator to test the surveillance robot stabilization control. Since the surveillance robot is installed on the unmanned ground vehicle (UGV), it is required to have a stabilization control system to compensate the disturbance from the UGV. PID control scheme has been applied to the parallel robot to generate controlled motion following the input motion.

  • PDF