• 제목/요약/키워드: Package Substrate

검색결과 182건 처리시간 0.025초

Development of Miniature Quad SAW Filter Bank based on PCB Substrate

  • Lee, Young-Jin;Kim, Chang-Il;Paik, Jong-Hoo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권1호
    • /
    • pp.33-37
    • /
    • 2008
  • This paper describes the development of a new $5.0{\times}3.2mm$ SAW filter bank which is consist of 12 L, C matching components and 4 SAW bare chips on PCB substrate with CSP technology. We improved the manufacturing cost by removing the ceramic package through direct flip bonding of $LiTaO_3$ SAW bare chip on PCB board after mounting L, C passive element on PCB board. After that we realized the hermitic sealing by laminating the epoxy film. To confirm the confidentiality and durability of the above method, we have obtained the optimum flip bonding & film laminating condition, and figured out material property and structure to secure the durability & moisture proof of PCB board. The newly developed super mini $5.0{\times}3.2mm$ filter bank shows the superior features than those of existing products in confidence, electrical, mechanical characters.

종방향 초음파를 이용한 Au 범프의 솔더링 공정 (Soldering Process of Au Bump using Longitudinal Ultrasonic)

  • 김정호;이지혜;유중돈;최두선
    • Journal of Welding and Joining
    • /
    • 제22권1호
    • /
    • pp.65-70
    • /
    • 2004
  • A soldering process with longitudinal ultrasonic is conducted in this work using the Au bump and substrate. Localized heating of the solder is achieved and the stirring action due to the ultrasonic is found to influence the bond strength and microstructure of the eutectic solder The acceptable bonding condition is determined from the tensile strength. Since the multiple bonds can be formed simultaneously with localized heating, the proposed ultrasonic soldering method appears to be applicable to the high-density electronic package.

An Wideband GaN Low Noise Amplifier in a 3×3 mm2 Quad Flat Non-leaded Package

  • Park, Hyun-Woo;Ham, Sun-Jun;Lai, Ngoc-Duy-Hien;Kim, Nam-Yoon;Kim, Chang-Woo;Yoon, Sang-Woong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권2호
    • /
    • pp.301-306
    • /
    • 2015
  • An ultra-compact and wideband low noise amplifier (LNA) in a quad flat non-leaded (QFN) package is presented. The LNA monolithic microwave integrated circuit (MMIC) is implemented in a $0.25{\mu}m$ GaN IC technology on a Silicon Carbide (SiC) substrate provided by Triquint. A source degeneration inductor and a gate inductor are used to obtain the noise and input matching simultaneously. The resistive feedback and inductor peaking techniques are employed to achieve a wideband characteristic. The LNA chip is mounted in the $3{\times}3-mm^2$ QFN package and measured. The supply voltages for the first and second stages are 14 V and 7 V, respectively, and the total current is 70 mA. The highest gain is 13.5 dB around the mid-band, and -3 dB frequencies are observed at 0.7 and 12 GHz. Input and output return losses ($S_{11}$ and $S_{22}$) of less than -10 dB measure from 1 to 12 GHz; there is an absolute bandwidth of 11 GHz and a fractional bandwidth of 169%. Across the bandwidth, the noise figures (NFs) are between 3 and 5 dB, while the output-referred third-order intercept points (OIP3s) are between 26 and 28 dBm. The overall chip size with all bonding pads is $1.1{\times}0.9mm^2$. To the best of our knowledge, this LNA shows the best figure-of-merit (FoM) compared with other published GaN LNAs with the same gate length.

Adhesive bonding using thick polymer film of SU-8 photoresist for wafer level package

  • Na, Kyoung-Hwan;Kim, Ill-Hwan;Lee, Eun-Sung;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • 센서학회지
    • /
    • 제16권5호
    • /
    • pp.325-330
    • /
    • 2007
  • For the application to optic devices, wafer level package including spacer with particular thickness according to optical design could be required. In these cases, the uniformity of spacer thickness is important for bonding strength and optical performance. Packaging process has to be performed at low temperature in order to prevent damage to devices fabricated before packaging. And if photosensitive material is used as spacer layer, size and shape of pattern and thickness of spacer can be easily controlled. This paper presents polymer bonding using thick, uniform and patterned spacing layer of SU-8 2100 photoresist for wafer level package. SU-8, negative photoresist, can be coated uniformly by spin coater and it is cured at $95^{\circ}C$ and bonded well near the temperature. It can be bonded to silicon well, patterned with high aspect ratio and easy to form thick layer due to its high viscosity. It is also mechanically strong, chemically resistive and thermally stable. But adhesion of SU-8 to glass is poor, and in the case of forming thick layer, SU-8 layer leans from the perpendicular due to imbalance to gravity. To solve leaning problem, the wafer rotating system was introduced. Imbalance to gravity of thick layer was cancelled out through rotating wafer during curing time. And depositing additional layer of gold onto glass could improve adhesion strength of SU-8 to glass. Conclusively, we established the coating condition for forming patterned SU-8 layer with $400{\mu}m$ of thickness and 3.25 % of uniformity through single coating. Also we improved tensile strength from hundreds kPa to maximum 9.43 MPa through depositing gold layer onto glass substrate.

FOWLP 구조의 영향 인자에 따른 휨 현상 해석 연구 (A Study of Warpage Analysis According to Influence Factors in FOWLP Structure)

  • 정청하;서원;김구성
    • 반도체디스플레이기술학회지
    • /
    • 제17권4호
    • /
    • pp.42-45
    • /
    • 2018
  • As The semiconductor decrease from 10 nanometer to 7 nanometer, It is suggested that "More than Moore" is needed to follow Moore's Law, which has been a guide for the semiconductor industry. Fan-Out Wafer Level Package(FOWLP) is considered as the key to "More than Moore" to lead the next generation in semiconductors, and the reasons are as follows. the fan-out WLP does not require a substrate, unlike conventional wire bonding and flip-chip bonding packages. As a result, the thickness of the package reduces, and the interconnection becomes shorter. It is easy to increase the number of I / Os and apply it to the multi-layered 3D package. However, FOWLP has many issues that need to be resolved in order for mass production to become feasible. One of the most critical problem is the warpage problem in a process. Due to the nature of the FOWLP structure, the RDL is wired to multiple layers. The warpage problem arises when a new RDL layer is created. It occurs because the solder ball reflow process is exposed to high temperatures for long periods of time, which may cause cracks inside the package. For this reason, we have studied warpage in the FOWLP structure using commercial simulation software through the implementation of the reflow process. Simulation was performed to reproduce the experiment of products of molding compound company. Young's modulus and poisson's ratio were found to be influenced by the order of influence of the factors affecting the distortion. We confirmed that the lower young's modulus and poisson's ratio, the lower warpage.

플립 칩 BGA에서 2차 레벨 솔더접합부의 신뢰성 향상 (The Improvement of 2nd Level Solder Joint Reliability fur Flip Chip Ball Grid Array)

  • 김경섭;이석;장의구
    • Journal of Welding and Joining
    • /
    • 제20권2호
    • /
    • pp.90-94
    • /
    • 2002
  • FC-BGA has advantages over other interconnection methods including high I/O counts, better electrical performance, high throughput, and low profile. But, FC-BGA has a lot of reliability issues. The 2nd level solder joint reliability of the FC-BGA with large chip on laminate substrate was studied in this paper. The purpose of this study is to discuss solder joint failures of 2nd level thermal cycling test. This work has been done to understand the influence of the structure of package, the properties of underfill, the properties and thickness of bismaleimide tiazine substrate and the temperature range of thermal cycling on 2nd level solder joint reliability. The increase of bismaleimide tiazine substrate thickness applied to low modulus underfill was improve of solder joint reliability. The resistance of solder ball fatigue was increased solder ball size in the solder joints of FC-BGA.

153 FC-BGA에서 솔더접합부의 신뢰성 향상에 관한 연구 (A Study on the Improvement of Solder Joint Reliability for 153 FC-BGA)

  • 장의구;김남훈;유정희;김경섭
    • 마이크로전자및패키징학회지
    • /
    • 제9권3호
    • /
    • pp.31-36
    • /
    • 2002
  • PBGA에 비해 상대적으로 큰 칩을 실장하는 고속 SRAM용 153 FC-BGA을 대상으로 2차 솔더접합부의 신뢰성을 평가하였다. 실험은 열사이클 시험에서 발생하는 단면과 양면 실장, 패키지 구조, 언더 필 재료, 기판의 종류와 두께, 솔더 볼의 크기에 따른 영향을 분석하였다. BT기판의 두께가 0.95mm에서 1.20mm로 증가하고, 낮은 영률 의 언더 필 재료에서 솔더접합부의 피로 수명이 30% 향상됨을 확인하였다. 또한 솔더 볼의 크기가 0.76 mm에서 0.89mm로 증가하면, 솔더접합부에서 균열에 대한 저항성은 2배 정도 증가하였다.

  • PDF

Optimal pressure and temperature for Cu-Cu direct bonding in three-dimensional packaging of stacked integrated circuits

  • Seunghyun Yum;June Won Hyun
    • 한국표면공학회지
    • /
    • 제56권3호
    • /
    • pp.180-184
    • /
    • 2023
  • Scholars have proposed wafer-level bonding and three-dimensional (3D) stacked integrated circuit (IC) and have investigated Cu-Cu bonding to overcome the limitation of Moore's law. However, information about quantitative Cu-Cu direct-bonding conditions, such as temperature, pressure, and interfacial adhesion energy, is scant. This study determines the optimal temperature and pressure for Cu-Cu bonding by varying the bonding temperature to 100, 150, 200, 250, and 350 ℃ and pressure to 2,303 and 3,087 N/cm2. Various conditions and methods for surface treatment were performed to prevent oxidation of the surface of the sample and remove organic compounds in Cu direct bonding as variables of temperature and pressure. EDX experiments were conducted to confirm chemical information on the bonding characteristics between the substrate and Cu to confirm the bonding mechanism between the substrate and Cu. In addition, after the combination with the change of temperature and pressure variables, UTM measurement was performed to investigate the bond force between the substrate and Cu, and it was confirmed that the bond force increased proportionally as the temperature and pressure increased.

여러 분위기에서의 저온 열처리와 폴리머 기판의 표면 morphology가 비정질 $Ta_2O_5$ 박막 커패시터의 특성에 미치는 영향 (Effects of Low Temperature Annealing at Various Atmospheres and Substrate Surface Morphology on the Characteristics of the Amorphous $Ta_2O_5$ Thin Film Capacitors)

  • 조성동;백경욱
    • 한국재료학회지
    • /
    • 제9권5호
    • /
    • pp.509-514
    • /
    • 1999
  • Interest in the integrated capacitors, which make it possible to reduce the size of and to obtain improved electrical performance of an electronic system, is expanding. In this study, $Ta_2$O\ulcorner thin film capacitors for MCM integrated capacitors were fabricated on a Upilex-S polymer film by DC magnetron reactive sputtering and the effects of low temperature annealing at various atmospheres and substrate surface morphology on the capacitor characteristics were discussed. The low temperature($150^{\circ}C$) annealing produced improved capacitor yield irrespective of the annealing at mosphere. But the leakage current of the $O_2$-annealed film was larger than that of any other films. This is presumably mosphere. But the leakage current of the $O_2$-annealed film was larger than that of any other films. This is presumably due to the change of the $Ta_2$O\ulcorner film surface by oxygen, which was explained by conduction mechanism study. Leakage current and breakdown field strength of the capacitors fabricated on the Upilex-S film were 7.27$\times$10\ulcornerA/$\textrm{cm}^2$ and 1.0 MV/cm respectively. These capacitor characteristics were inferior to those of the capacitors fabricated on the Si substrate but enough to be used for decoupling capacitors in multilayer package. Roughness Analysis of each layer by AFM demonstrated that the properties of the capacitors fabricated on the polymer film were affected by the surface morphology of the substrate. This substrate effect could be classified into two factors. One is the surface morphology of the polymer film and the other is the surface morphology of the metal bottom electrode determined by the deposition process. Therefore, the control of the two factors is important to obtain improved electrical of capacitors deposited on a polymer film.

  • PDF

PDMS 기반 강성도 경사형 신축 전자패키지의 신축변형-저항 특성 (Stretchable Deformation-Resistance Characteristics of the Stiffness-Gradient Stretchable Electronic Packages Based on PDMS)

  • 박대웅;오태성
    • 마이크로전자및패키징학회지
    • /
    • 제26권4호
    • /
    • pp.47-53
    • /
    • 2019
  • Polydimethylsiloxane (PDMS)를 베이스 기판으로 사용하고 이보다 강성도가 높은 polytetrafluoroethylene(PTFE)를 island 기판으로 사용한 soft PDMS/hard PDMS/PTFE 구조의 강성도 경사형 신축 패키지를 형성하고, 이의 신축변형에 따른 저항특성을 분석하였다. PDMS/PTFE 기판패드에 50 ㎛ 직경의 칩 범프들을 anisotropic conductive paste를 사용하여 실장한 플립칩 접속부는 96 mΩ의 평균 접속저항을 나타내었다. Soft PDMS/hard PDMS/PTFE 구조의 신축 패키지를 30% 변형률로 인장시 PTFE의 변형률이 1%로 억제되었으며, PTFE 기판에 형성한 회로저항의 중가는 1%로 무시할 정도였다. 0~30% 범위의 신축변형 싸이클을 2,500회 반복시 회로저항이 1.7% 증가하였다.