• Title/Summary/Keyword: PDLA

Search Result 10, Processing Time 0.025 seconds

Characterization and Biocompatibility with Dispersed Solutfon of PLA-POE-PLA Block Copolymer (PLA-POE-PLA 블록공중합체 분산액에 의한 생체적합성의 평가 및 특성)

  • Lee, Chan-Woo;Kim, Hong;Song, Kyung-Hun;Moon, Sung-Il
    • Polymer(Korea)
    • /
    • v.26 no.2
    • /
    • pp.174-178
    • /
    • 2002
  • PLLA-POE-PLLA block copolymers were prepared using PLLA and POE with different compositions. Copolymers were obtained in high yield and the polydispersity of the copolymers was very narrow. A dispersed solution of 0.1 g/mL of PLLA-POE-PLLA copolymer was mixed with a dispersed solution of 0.1 g/mL of PDLA-POE-PDLA copolymer. Gel formation was observed from the mixed product obtained at the human body temperature of $37^{\circ}C$. The mixed product comprising PDLA-POE-PDLA and PLLA-POE-PLLA was found to have higher cloud points than that of PLLA-POE-PLLA copolymer. The cloud points decreased with increasing the concentration of the mixed copolymer dispersed solution.

Toughening of PLA stereocomplex by Impact modifiers (충격보강제에 의한 PLA stereocomplex의 강인화 연구)

  • Nam, Byeong-Uk;Lee, Bum-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.919-925
    • /
    • 2012
  • We tried to blend PLLA and PDLA at overall compositions to form PLA stereocomplexes (SC). The presence of the SC crystalline phase in the PLLA matrix was verified by differential scanning calorimetry (DSC). As a result, a various PDLA composition of the PLA SC blends can influence PLA SC formation. And the largest amount of PLA SC crystallites was formed when PLLA/PDLA ratio is 50/50. In addition, we have tried to do PLA SC toughening with two impact modifiers in 92/8, 85/15 ratio of PLLA/PDLA to enhance the mechanical properties such as impact strength. Thermal and mechanical properties of PLA SC were investigated by DSC, HDT, Izod impact tester and UTM. PLA SC formation decreased when 10-20 wt% of Strong120 (impact modifier) was added. On the other hand, there is no effect on PLA SC formation when 10-20% of Elvaloy (impact modifier) was added. HDT values dramatically increased over $100^{\circ}C$ with the addition of PDLA. However, HDT decreased as Strong120 and Elvaloy content increased. Finally, we could find well balanced composition of toughened PLA SC with 10wt% of impact modifier in flexural modulus and impact strength.

Preparation and Performance Improvement of Polylactic acid based composites by stereocomplex (스테레오 컴플렉스를 이용한 폴리유산 복합재 제조 및 성능 개선)

  • Hong, Chae-Hwan;Kim, Yeon-Hee;Park, Jun-Seo;Nam, Byeong-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1671-1676
    • /
    • 2015
  • A unique crystallization behavior of poly(L-lactide)(PLLA)/poly(D-lactide)(PDLA) stereocomplex(SC) was observed when a PLLA/PDLA blend was subjected to the specific melting conditions. Therefore, we tried to blend PLLA and PDLA at overall composition to form PLA stereocomplexes. Moreover, impact modifier and reinforcement materials such as talc and glass fiber added to enhance the mechanical and thermal properties such as impact strength and heat distortion temperature(HDT). As a result, we got one representative result, one composite recipe with HDT $115^{\circ}C$. For more economic technology, we tried to blend PLLA and Polypropylene at overall composition and we got another representative result which could be applied to current PP/talc composites and ABS materials. The core technology of this might be the well dispersion of glass fibers into the matrix resin such as PP, PLLA and impact strength modifier.

The Current State of D-lactic Acid Production Technology Using Microorganism (미생물을 이용한 D형 유산 생산 기술 현황)

  • Hong, Chae-Hwan;Kim, Si-Hwan;Seo, Ji-Yeon;Han, Do-Suck;Kim, Yong-Hwan
    • KSBB Journal
    • /
    • v.26 no.6
    • /
    • pp.477-482
    • /
    • 2011
  • There has been a growing attention on PDLA (poly D-lactic acid) since stereocomplex PLA, a kind of polymer alloy between PLLA and PDLA was known much thermally stable compared PLLA. Superior characteristics of stereocomplex PLA result in the elevated demand for D-lactic acid. Although many research works have been reported for L-lactic acid production especially food industry, however there are relatively few research works for D-lactic acid production since D-lactic acid cannot find any applications in food industry. Most imminent issue for D-lactic acid is the economic production process that requires low cost medium, efficient lactic acid producing microorganism and finally large scale-up design. In this review, current status of D-lactic acid production process will be summarized and discussed for the further improvement of D-lactic acid production process.

Establishment of Economic Threshold by Evaluation of Yield Component and Yield Damages Caused by Rice Leaf Blast (Magnaporthe grisea) (벼 잎도열병 피해해석에 의한 경제적 방제수준 설정)

  • Yeh, Wan-Hee;Park, Hong-Hyun;Nam, Young-Ju;Kim, Seol-A;Lee, Jeong-Hee;Shim, Hong-Sik;Kim, Yong-Ki;Lee, Yong-Hwan;Lee, Yeong-Hoon
    • Research in Plant Disease
    • /
    • v.14 no.1
    • /
    • pp.21-25
    • /
    • 2008
  • This study was conducted to decide disease incidence level of rice leaf blast required for reasonable fungicide application in paddy field. We induced the disease development by inoculating rice blast pathogens on rice seedlings (Jinmibyeo) in the greenhouse and transplanting the infected seedlings in the field two weeks after rice plants were transplanted. We scored the disease incidence, grouped and marked according to degree of percentage of diseased leaf area at maximum stage of disease development. The percent diseased leaf area (PDLA) had negative correlations with panicle number per hill, ripened grain (%), and total yield; their correlation coefficients (r), $-0.97^{**}$, $-1.00^{**}$ and $-0.96^{**}$, respectively. However, it had positive correlations with spikelets per panicle and thousand grain weight; their correlation coefficients (r), $0.98^{**}$ and $0.98^{**}$, respectively. Gain threshold (GT) calculated based on control cost and market price was estimated to be 8.35. Economic injury level (EIL) obtained based on GT and coefficient of damage of regression equation between disease incidence and the different yield components; panicle number per hill, spikelets per panical, ripened grain(%), thousand grain weight and yield were 41.8, 9.7, 19.1, 291.1 and 3.4%, respectively. Economic threshold (ET) for yield was 2.7% ($3.4%(EIL){\times}0.8$) on PDLA. These results suggest that application of fungicide is necessary when two under leaves are almost covered with lesions or contained more than twenty large lesions under leaves at maximum tillering stage.

A Faster Approach to Stereocomplex Formation of High Molecular Weight Polylactide Using Supercritical Dimethyl Ether (디메틸에테르 초임계 유체를 이용한 고분자량 폴리락티드 스테레오 콤플렉스의 제조)

  • Bibi, Gulnaz;Jung, Youngmee;Lim, Jong Choo;Kim, Soo Hyun
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.453-460
    • /
    • 2015
  • Engineering the polylactide via stereocomplexation with supercritical fluid (SCF) technology paved way to fabricate polymers with enhanced thermal and mechanical properties. We aimed to establish a SCF medium with excellent solubility for PLA without any additional solvent/co-solvent. We, therefore, employed supercritical dimethyl ether to synthesize 100% stereocomplex polylactide from high molecular weight homopolymers with an excellent yield. The remarkable solubility of the homopolymers in dimethyl ether is the key for quick conversion to s-PLA. This study proves a rapid synthesis route of dry s-PLA powder with sc-DME at 250 bar, $70^{\circ}C$ and 1.5 h, which are reasonably achievable processing parameters compared to the conventional methods. The degree of stereocomplexation was evaluated under the effect of pressures, temperatures, times, homopolymer-concentrations and molecular weights. An increment in the degree of stereocomplexation was observed with increased temperature and pressure. Complete conversion to s-PLA was obtained for PLLA and PDLA with $M_n{\sim}200kg{\cdot}mol^{-1}$ with a total homopolymer to total DME ratio of 6:100% w/w at prescribed reaction conditions. The degree of stereocomplexation was determined by DSC and confirmed by XRD. Considerable improvement in thermo-mechanical properties of s-PLA was observed. DSC and TGA analyses proved a $50^{\circ}C$ enhancement in melting transition and a high onset temperature for thermal degradation of s-PLA respectively.

Studies of Degradation Behavior of Stereochemical Poly(lactide) Blend Fibers Prepared by Electrospinning (전기방사에 의한 이성질 폴리락타이드 블렌드의 섬유제조와 분해거동에 관한 연구)

  • Jang, Ei-Sup;Lee, Won-Ki
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.473-481
    • /
    • 2014
  • Poly(lactide)s(PLA) is an attractive material to solve the problem of waste plastic accumulation in nature because of its biodegradability. The lactide exists in three stereoisomeric configurations: L-lactide, D-lactide, and meso-lactide. PLA stereocomplexes, formed by the mixing of two enantiomers, poly(L-lactide)(PLLA) and poly(D-lactide)(PDLA), have many favorable characteristics because the stereocomplex showed $50^{\circ}C$ higher melting point than each enantiomeric polymer and the resistance toward degradation increased. In this study, we investigated the influence of the composition and the optical purity of each component on the formation of stereocomplexes. Also, the nanofibers of stereochemical PLA and their blends were prepared by electrospinning method. The properties of the obtained fibers were analyzed by differential scanning calorimetry and scanning electron microscopy. The results showed that a degree of stereocomplex was controlled by change of optical purity of each component. The enzymatic degradation of the fibers were strongly dependent on the stereocomplex.

In situ Gel Forming Stereocomplex Composed of Four-Arm PEG-PDLA and PEG-PLLA Block Copolymers

  • Jun, Yeo-Jin;Park, Kyung-Min;Joung, Yoon-Ki;Park, Ki-Dong;Lee, Seung-Jin
    • Macromolecular Research
    • /
    • v.16 no.8
    • /
    • pp.704-710
    • /
    • 2008
  • Injectable hydrogels are quite promising materials due to their potential to minimize invasive implantation and this provides versatile fitness irrespective of the damaged regions and facilitates the incorporation of bioactive agents or cells. In situ gel formation through stereocomplex formation is a promising candidate for injectable hydrogels. In this paper, a new series of enantiomeric, four-arm, PEG-PLA block copolymers and their stereocomplexed hydrogels were prepared by bulk ring-opening polymerization of D-lactide and L-lactide, respectively, with stannous octoate as a catalyst. The prepared polymers were characterized by $^1H$ nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared (FT IR) spectroscopy, gel permeation chromatography (GPC) and thermal gravitational analysis (TGA), confirming the tailored structure and chain lengths. The swelling and degradation behavior of the hydrogels formed from a selected copolymer series were observed in different concentrations. The degradation rate decreased with increasing polymer content in the solution. The rheological behavior indicated that the prepared hydrogel underwent in situ gelation and had favorable mechanical strength. In addition, its feasibility as an injectable scaffold was evaluated using a media dependence test for cell culture. A Tris solution was more favorable for in situ gel formation than PBS and DMEM solutions were. These results demonstrated the in situ formation of hydrogel through the construction of a stereocomplex with enantiomeric, 4-arm, PEG-PLA copolymers. Overall, enantiomeric, 4-arm, PEG-PLA copolymers are a new species of stereocomplexed hydrogels that are suitable for further research into injectable hydrogels.

A Molecular Dynamics Simulation Study on the Thermoelastic Properties of Poly-lactic Acid Stereocomplex Nanocomposites (분자동역학 전산모사를 이용한 폴리유산 스테레오 콤플렉스 나노복합재의 가수분해에 따른 열탄성 물성 예측 연구)

  • Ki, Yelim;Lee, Man Young;Yang, Seunghwa
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.371-378
    • /
    • 2018
  • In this study, the thermoelastic properties of poly lactic acid (PLA) based nanocomposites are predicted by molecular dynamics (MD) simulation and a micromechanics model. The stereocomplex mixed with L-lactic acid (PLLA) and D-lactic acid (PDLA) is modeled as matrix phase and a single walled carbon nanotube is embedded as reinforcement. The glass transition temperature, elastic moduli and thermal expansion coefficients of pure matrix and nanocomposites unit cells are predicted though ensemble simulations according to the hydrolysis. In micromechanics model, the double inclusion (D-I) model with a perfect interface condition is adopted to predict the properties of nanocomposites at the same composition. It is found that the stereocomplex nanocomposites show prominent improvement in thermal stability and interfacial adsorption regardless of the hydrolysis. Moreover, it is confirmed from the comparison of MD simulation results with those from the D-I model that the interface between CNT and the stereocomplex matrix is slightly weak in nature.

MD Simulation of PLA-PEG Composites for Additive Manufacturing (적층 가공에서 적용 가능한 PLA-PEG 복합재료의 MD Simulation)

  • Songhee Ham;Youngjoon Jeon
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.285-290
    • /
    • 2023
  • Poly-lactic acid (PLA) is the most promising polymer in additive manufacturing as an alternative to acrylonitrile butadiene styrene (ABS). Since it is produced from renewable resources such as corn starch and sugar beets, it is also biocompatible and biodegradable. However, PLA has a couple of issues that limit its use. First, it has a comparatively low glass transition temperature of around 60 ℃, such that it exhibits low thermal resistance. Second, PLA has low impact strength because it is brittle. Due to these problems, scientists have found methods to improve the crystallinity and ductility of PLA. Polyethylene glycol (PEG) is one of the most studied plasticizers for PLA to give it chain mobility. However, the blend of PLA and PEG becomes unstable, and phase separation occurs even at room temperature as PEG is self-crystallized. Thus, it is necessary to investigate the optimal mixing ratio of PLA-PEG at the molecular scale. In this study, molecular dynamics will be conducted with various ratios of L-type PLA (PLLA) or DL-type PLA-PEG (PDLA-PEG) systems by using BIOVIA Materials Studio.