DOI QR코드

DOI QR Code

A Molecular Dynamics Simulation Study on the Thermoelastic Properties of Poly-lactic Acid Stereocomplex Nanocomposites

분자동역학 전산모사를 이용한 폴리유산 스테레오 콤플렉스 나노복합재의 가수분해에 따른 열탄성 물성 예측 연구

  • Ki, Yelim (School of Energy Systems Engineering, Chung-Ang University) ;
  • Lee, Man Young (The 4th R&D Institute - 4, Agency for Defense Development) ;
  • Yang, Seunghwa (School of Energy Systems Engineering, Chung-Ang University)
  • Received : 2018.08.06
  • Accepted : 2018.11.09
  • Published : 2018.12.31

Abstract

In this study, the thermoelastic properties of poly lactic acid (PLA) based nanocomposites are predicted by molecular dynamics (MD) simulation and a micromechanics model. The stereocomplex mixed with L-lactic acid (PLLA) and D-lactic acid (PDLA) is modeled as matrix phase and a single walled carbon nanotube is embedded as reinforcement. The glass transition temperature, elastic moduli and thermal expansion coefficients of pure matrix and nanocomposites unit cells are predicted though ensemble simulations according to the hydrolysis. In micromechanics model, the double inclusion (D-I) model with a perfect interface condition is adopted to predict the properties of nanocomposites at the same composition. It is found that the stereocomplex nanocomposites show prominent improvement in thermal stability and interfacial adsorption regardless of the hydrolysis. Moreover, it is confirmed from the comparison of MD simulation results with those from the D-I model that the interface between CNT and the stereocomplex matrix is slightly weak in nature.

본 연구에서는 폴리유산 나노복합재의 열탄성 거동을 예측하기 위해 분자동역학 전산모사를 수행하고 그 결과를 열탄성 미시역학 모델 예측해와 비교하였다. 폴리유산의 두 이성질체인 D유산(Poly D-lactide)와 L유산(Poly L-lactide)을 혼합한 스테레오 콤플렉스를 모델링하였고 이들을 기지로 사용한 탄소나노튜브 나노복합재를 구성하였다. 유산의 분해 유무에 따른 유리전이온도와 탄성계수 그리고 열팽창계수를 앙상블 전산모사를 통해 예측하였다. 미시역학 모델에서는 계면의 완전 결합을 가정한 이중입자 모델을 적용하여 탄성계수와 열팽창계수를 동일한 조성에서 예측하였다. 그 결과 열적 안정성에 있어 스테레오 콤플렉스에 탄소나노튜브가 첨가될 경우 유산의 뛰어난 계면 흡착과 이에 따른 열적 안정성 향상을 보였다. 순수한 유산과 나노복합재 모두 가수 분해에 따른 열적 특성 변화는 관찰되지 않았다. 또한, 스테레오 콤플렉스와 나노튜브 간 계면은 약한 불완전 결합상태 임을 알 수 있었다.

Keywords

BHJRB9_2018_v31n6_371_f0001.png 이미지

Fig. 1. Molecular structures of stereocomplex and nanocomposites

BHJRB9_2018_v31n6_371_f0002.png 이미지

Fig. 2. Stress-Strain curve of stereocomplex

BHJRB9_2018_v31n6_371_f0003.png 이미지

Fig. 3. Stress-Strain curves of nanocomposite; (a) Longitudinal tension (b) Transverse tension

BHJRB9_2018_v31n6_371_f0004.png 이미지

Fig. 4. Temperature-volume relation graph of stereocomplex before & after hydrolysis

BHJRB9_2018_v31n6_371_f0005.png 이미지

Fig. 5. Temperature-volume relation graph of stereocomplex/CNT before & after hydrolysis

BHJRB9_2018_v31n6_371_f0006.png 이미지

Fig. 6. Comparison of thermal expansion coefficient of nanocomposite determined from molecular dynamics simulation and double inclusion model

Table 1. Comparison of interaction energy between stereocomplex and carbon nanotube before & after hydrolysis

BHJRB9_2018_v31n6_371_t0001.png 이미지

Table 2. Elastic Modulus of nanocomposite before & after hydrolysis

BHJRB9_2018_v31n6_371_t0002.png 이미지

Table 3. Glass transition temperature before & after hydrolysis

BHJRB9_2018_v31n6_371_t0003.png 이미지

Table 4. Thermal expansion coefficient of stereocomplex before & after glass transition

BHJRB9_2018_v31n6_371_t0004.png 이미지

Table 5. Thermal expansion coefficient of nanocomposite before & after glass transition

BHJRB9_2018_v31n6_371_t0005.png 이미지

References

  1. Raquez, J.-M., Habibi, Y., Murariu, M., and Dubois, P., "Polylactide (PLA)-based Nanocomposites", Progress in Polymer Science, Vol. 38, Issue 10-11, 2013, pp. 1504-1542. https://doi.org/10.1016/j.progpolymsci.2013.05.014
  2. Hong, C.-H., and Han, D.-S., "The Present Situation and Prediction of Next Generation Biomaterial Poly (lactic acid)", Polymer Science and Technology, Vol. 21, No. 1, 2010, pp. 41-44.
  3. Sutinee Girdthep, Wenuka Sankong, Asamaporn Pongmalee, Tinnakorn Saelee, Winita Punyodom, Puttinan Meepowpan, Patnarin Worajittiphon, "Enhanced Crystallization, Thermal Properties, and Hydrolysis Resistance of Poly(l-lactic acid) and its Stereocomplex by Incorporation of Graphene Nanoplatelets", Polymer Testing, Vol. 61, 2017, pp. 229-239. https://doi.org/10.1016/j.polymertesting.2017.05.009
  4. Yang, J.-S., Yang, C.-L., Wang, M.-S., Chen, B.-D., and Ma, X.-G., "Crystallization of Alkane Melts Induced by Carbon Nanotubes and Graphene Nanosheets: A Molecular Dynamics Simulation Study", Physical Chemistry Chemical Physics, Issue 34, 2011, pp. 15476-15482.
  5. Li, L., Li, C.Y., and Ni, C., "Polymer Crystallization-Driven, Periodic Patterning on Carbon Nanotubes", JACS Articles, Vol. 128, No. 5, 2006, pp. 1692-1699. https://doi.org/10.1021/ja056923h
  6. Yang, S., Yu, S., and Cho, M., "Influence of Thrower-Stone-Wales Defects on the Interfacial Properties of Carbon Nanotube/polypropylene Composites by a Molecular Dynamics Approach", Carbon, Vol. 55, 2013, pp. 113-143.
  7. Yang, H., Chen, Y., Liu, Y., and Cai, W.S. , "Molecular Dynamics Simulation of Polyethylene on Single Wall Carbon Nanotube", The Journal of Chemical Physics, Vol. 127, Issue 9, 2007.
  8. Yang, S., Yu, S., and Cho, M., "Multiscale Modeling of Size-dependent Elastic Properties of Carbon Nanotube/polymer Nanocomposites with Interfacial Imperfections", Polymer, Vol. 24, No. 2, 2012, pp. 623-633.
  9. Yang, S., Yu, S., Ryu, J., Cho, J.-M., Kyoung, W., Han, D.-S., and Cho, M., "Nonlinear Multiscale Modeling Approach to Characterize Elastoplastic Behavior of CNT/polymer Nanocomposites Considering the Interphase and Interfacial Imperfection", International Journal of Plasticity, Vol. 41, 2013, pp. 124-146. https://doi.org/10.1016/j.ijplas.2012.09.010
  10. Accelrys Inc. San Francisco.
  11. Sun, H., Mumby, S.J., Maple, J.R., and Hgler, A.T., "An abi initio CFF90 All-atom Force Field for Polycarbonates", Journal of American Chemical Society, Vol. 116, 1994, pp. 2978-2987. https://doi.org/10.1021/ja00086a030
  12. Plimpton, S., "Fast Parallel Algorithms for Short-range Molecular Dynamics", Journal of Computational Physics, Vol. 117, 1995, pp.1-19. https://doi.org/10.1006/jcph.1995.1039
  13. Hoover, W.G., "Canonical Dynamics: Equilibrium Phase-space Distributions", Physical Review A, Vol. 31, No 3, 1984, pp. 1695-1697. https://doi.org/10.1103/PhysRevA.31.1695
  14. Hoover, W.G., "Constant-pressure Equations of Motion", Physical Review A, Vol. 34, No. 3, 1986, pp. 2499-2500. https://doi.org/10.1103/PhysRevA.34.2499
  15. Donald A. McQuarrie, Statistical Mechanics, University of Science Books, 2000.
  16. Hori, M., and Nemat-Nasser, S., "Double-inclusion Model and Overall Moduli of Multiphase Composites", Mechanics of Materials, Vol. 14, Issue 3, 1993, pp. 189-206. https://doi.org/10.1016/0167-6636(93)90066-Z
  17. Li, J.Y., "Thermoelastic Behavior of Composites with Functionally Graded Interface: A Multi Inclusion Model", International Journal of Solids Structures, Vol. 37, Issue 39, 2000, pp. 5579-5597. https://doi.org/10.1016/S0020-7683(99)00227-9
  18. Yang, S., and Cho, M., "A Scale-bridging Method for Nanoparticulate Polymer Nanocomposites and Their Non-dilute Concentration Effect", Applied Physics Letters, Vol. 94, 2009, 223104. https://doi.org/10.1063/1.3143669
  19. Eshelby, J.D., "The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems", Proceedings of the Royal Society of London Series A 1957, Vol. A241, pp. 376-396.
  20. Tandon, G.P., and Weng, G.J., "Average Stress in the Matrix and Effective Moduli of Randomly Oriented Composites", Composites Science and Technology, Vol. 27, 1986, pp. 111-132. https://doi.org/10.1016/0266-3538(86)90067-9
  21. Jin, J., and Yang, S., "Molecular Dynamics Study on Mechanical Behavior and Load Transfer of CNT/PET Nanocomposites: the Effects of Covalent Grafting", Composites Research, Vol. 30, No. 3, 2017, pp. 193-201. https://doi.org/10.7234/COMPOSRES.2017.30.3.193
  22. Yang, S., Yu, S., and Cho, M., "Influence of Thrower-Stone-Wales Defects on the Interface Properties of Carbon Nanotube Reinforced Polypropylene Composites by Molecular Dynamics Approach", Carbon, Vol. 55, 2013, pp. 133-143. https://doi.org/10.1016/j.carbon.2012.12.019