Browse > Article
http://dx.doi.org/10.7317/pk.2015.39.3.453

A Faster Approach to Stereocomplex Formation of High Molecular Weight Polylactide Using Supercritical Dimethyl Ether  

Bibi, Gulnaz (Department of Chemical and Biochemical Engineering, Dongguk University-Seoul)
Jung, Youngmee (Biomaterials Research Center, Korea Institute of Science and Technology)
Lim, Jong Choo (Department of Chemical and Biochemical Engineering, Dongguk University-Seoul)
Kim, Soo Hyun (Biomaterials Research Center, Korea Institute of Science and Technology)
Publication Information
Polymer(Korea) / v.39, no.3, 2015 , pp. 453-460 More about this Journal
Abstract
Engineering the polylactide via stereocomplexation with supercritical fluid (SCF) technology paved way to fabricate polymers with enhanced thermal and mechanical properties. We aimed to establish a SCF medium with excellent solubility for PLA without any additional solvent/co-solvent. We, therefore, employed supercritical dimethyl ether to synthesize 100% stereocomplex polylactide from high molecular weight homopolymers with an excellent yield. The remarkable solubility of the homopolymers in dimethyl ether is the key for quick conversion to s-PLA. This study proves a rapid synthesis route of dry s-PLA powder with sc-DME at 250 bar, $70^{\circ}C$ and 1.5 h, which are reasonably achievable processing parameters compared to the conventional methods. The degree of stereocomplexation was evaluated under the effect of pressures, temperatures, times, homopolymer-concentrations and molecular weights. An increment in the degree of stereocomplexation was observed with increased temperature and pressure. Complete conversion to s-PLA was obtained for PLLA and PDLA with $M_n{\sim}200kg{\cdot}mol^{-1}$ with a total homopolymer to total DME ratio of 6:100% w/w at prescribed reaction conditions. The degree of stereocomplexation was determined by DSC and confirmed by XRD. Considerable improvement in thermo-mechanical properties of s-PLA was observed. DSC and TGA analyses proved a $50^{\circ}C$ enhancement in melting transition and a high onset temperature for thermal degradation of s-PLA respectively.
Keywords
fast stereocomplex; dimethyl ether; high molecular weight polylactides; supercritical fluid technology;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. H. Kim, Y. Jung, S. I. Kim, and J. I. Lim, Polym. Korea, 37, 411 (2013).   DOI   ScienceOn
2 Y. Ikada, K. Jamshidi, H. Tsuji, and S. H. Hyon, Macromolecules, 20, 904 (1987).   DOI
3 H. Tsuji, Macromol. Biosci., 5, 569 (2005).   DOI   ScienceOn
4 H. J. Kang, Y. H. Kim, S. H. Kim, and S. W. Chun, Polym. Korea, 24, 656 (2000).
5 S. H. Kim, Y. H. Kim, and W. J. Kim, Polym. Korea, 24, 431 (2000).
6 M. Spinu, U.S. Patent 5,317,064, (1994).
7 K. Fukushima and Y. Kimura, Macromol. Symp., 224, 133 (2005).   DOI   ScienceOn
8 K. S. Anderson and M. A. Hillmyer, Polymer, 47, 2030 (2006).   DOI   ScienceOn
9 K. Fukushima and Y. Kimura, J. Polym. Sci., Part A: Polym. Chem., 46, 3714 (2008).   DOI
10 P. Purnama and S. H. Kim, Macromolecules, 43, 1137 (2010).   DOI   ScienceOn
11 S. H. Kim, Y. Jung, and M. K Kang, Macromol. Res., 21, 1036 (2013).   DOI   ScienceOn
12 S. H. Kim, D. H. Yoon, S. Y. Kim, and B. Prabowo, Polym. Korea, 35, 284 (2011).
13 P. Purnama and S. H. Kim, Polym. Int., 61, 939 (2012).   DOI   ScienceOn
14 E. Reverchon, G. D. Porta, I. De Rosa, P. Subra, and D. Letourner, J. Supercrit. Fluids, 18, 239 (2000).   DOI   ScienceOn
15 J. M. Lee, B. C. Lee, and S. J. Hwang, J. Chem. Eng. Data, 45, 1162 (2000).   DOI   ScienceOn
16 J. D. Abraham, K. Joseph, and M. W. David, Editors, Handbook of Biodegradable Polymers, CRC Press, Boca Raton, 1998.
17 H. Tsuji, F. Horii, M. Nakagawa, Y. Ikada, H. Odani, and R. Kitamaru, Macromelecules, 25, 4144 (1992).
18 H. Tsuji, A. Mizuno, and Y. Ikada, J. Appl. Polym. Sci., 76, 947 (2000).   DOI
19 H. Tsuji, S. H. Hyon, and Y. Ikada, Macromelecules, 24, 5651 (1991).   DOI
20 H. Tsuji and Y. Ikada, Polymer, 40, 6699 (1999).   DOI   ScienceOn
21 M. A. McHugh and V. J. Krukonis, Supercritical Fluid Extraction: Principles and Practice, 2nd Ed., Butterworth-Heinemann, Boston, MA, 1994.
22 B. C. Lee and Y. M Kuk, J. Chem. Eng. Data, 47, 367 (2002).   DOI   ScienceOn
23 D. A. Good, Y. Li, and J. S. Francisco, Chem. Phys. Lett., 313, 267 (1999).   DOI   ScienceOn
24 B. Herman, Aerosol Spray Rep., 33, 385 (1994).
25 S. Bobbo and R. Camporese, J. Chem. Thermodynam., 30, 1041 (1998).   DOI   ScienceOn
26 D. B. Bivens and B. H. Minor, Int. J. Refrig., 21, 567 (1998).   DOI   ScienceOn
27 D. J. Wuebbles, A. Jain, J. Edmonds D. Harvey, and K. Hayhoe, Environ. Pollut., 100, 57 (1999).   DOI   ScienceOn
28 D. A. Good, J. S Francisco, A. Jain, and D. J. Wuebbles, J.Geophys. Res., 103, 2818 (1998).
29 J. Wu, Z. Liu, J. Pan, and X. Zhao, J. Chem. Eng. Data, 49, 32 (2004).   DOI   ScienceOn
30 T. A. Semelsberger, R. L. Borup, and H. L. Greene, J. Power Sources, 156, 497 (2006).   DOI   ScienceOn
31 S. H. Kim, Y. D. Park, and S. Y. Kim, Macromol. Symp., 249-250, 515 (2007).   DOI   ScienceOn
32 K. S. Oh, W. Bae, and H. Kim, Polymer, 48, 1450 (2007).   DOI   ScienceOn
33 K. S. Oh, W. Bae, and H. Kim, Eur. Polym. J., 44, 415 (2008).   DOI   ScienceOn
34 K. S. Oh, W. Bae, and H. Kim, Ind. Eng. Chem. Res., 47, 5734 (2008).   DOI   ScienceOn
35 S.-H. Lee and M. A. McHugh, Polymer, 38, 1317 (1997).   DOI   ScienceOn
36 B. M. Hasch, S. H. Lee, and M. A. McHugh, J. Appl. Polym. Sci., 59, 1107 (1996).   DOI
37 Y.-M. Kuk and B.-C. Lee, J. Chem. Eng. Data, 46, 1344 (2001).   DOI   ScienceOn
38 H. J. Choi, K. H. Lee, and J. Kim, Polym. Korea, 24, 358 (2000).
39 R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, 4th Ed., McGraw-Hill, New York, 1987.
40 K. Fukushima and Y. Kimura, Polym. Int., 55, 626 (2006).   DOI   ScienceOn
41 H. J. Kang, Y. H. Kim, S. H. Kim, and S. W. Chun, Polym. Korea, 24, 333 (2000).
42 Y. Fan, H. Nishida, Y. Tokiwa, and T. Endo, Polym. Degrad. Stabil., 86, 197 (2004).   DOI   ScienceOn