• Title/Summary/Keyword: Oxygen-plasma effect

Search Result 309, Processing Time 0.026 seconds

Effect of plasma treatment using underwater non-thermal dielectric barrier discharge to remove antibiotics added to fish farm effluent (양식장 배출수에 첨가된 항생제 제거 위한 수중 비열 유전체장벽 방전 플라즈마 처리 효과)

  • Kyu Seok Cho;Han Seung Kang
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.641-650
    • /
    • 2022
  • The purpose of this study was to compare the efficiency of air and oxygen injected into the underwater non-thermal dielectric barrier discharge plasma (DBD plasma) device used to remove five types of antibiotics (tetracycline, doxycycline, oxytetracycline, clindamycin, and erythromycin) artificially contained in the fish farm discharge water. The voltage given to generate DBD plasma was 27.8 kV, and the measurement intervals were 0, 0.5, 1, 2, 4, 8, 16 and 32 minutes. Tetracycline antibiotics significantly decreased in 4 minutes when air was injected and were reduced in 30 seconds when oxygen was injected. After the introduction of air and oxygen at 32 minutes, 78.1% and 95.8% of tetracycline were removed, 77.1% and 96.3% of doxycycline were removed, and 77.1% and 95.5% of oxytetracycline were removed, respectively. In air and oxygen, 59.6% and 83.0% of clindamycin and 53.3% and 74.3% of erythromycin were removed, respectively. The two antibiotics showed lower removal efficiency than tetracyclines. In conclusion, fish farm discharge water contains five different types of antibiotics that can be reduced using underwater DBD plasma, and oxygen gas injection outperformed air in terms of removal efficiency.

Surface Modification Effect and Mechanical Property of para-aramid Fiber by Low-temperature Plasma Treatment (저온 플라즈마 처리를 이용한 파라 아라미드 섬유의 표면 개질 효과 및 역학적 특성(2))

  • Park, Sung-Min;Son, Hyun-Sik;Sim, Ji-Hyun;Kim, Joo-Young;Kim, Taekyeong;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.27 no.1
    • /
    • pp.18-26
    • /
    • 2015
  • para-aramid fibers were treated by atmosphere air plasma to improve the interfacial adhesion. The wettability of plasma-treated aramid fiber was observed by means of dynamic contact angle surface free energy measurement. Surface roughness were investigated with the help of scanning electron microscopy and atomic force microscopy. The tensile test of aramid fiber roving was carried out to determine the effect of plasma surface treatments on the mechanical properties of the fibers. A pull-out force test was carried out to observe the interfacial adhesion effect with matrix material. It was found that surface modification and a chemical component ratio of the aramid fibers improved wettability and adhesion characterization. After oxygen plasma, it was indicated that modified the surface roughness of aramid fiber increased mechanical interlocking between the fiber surface and vinylester resin. Consequently the oxygen plasma treatment is able to improve fiber-matrix adhesion through excited functional group and etching effect on fiber surface.

Effect of Perovskite Surface Treatment Using Oxygen Atmospheric Pressure Plasma (산소분위기의 상압플라즈마를 이용한 페로브스카이트 표면 처리 효과)

  • Kim, Kyoung-Bo;Lee, Jongpil;Kim, Moojin
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.6
    • /
    • pp.146-153
    • /
    • 2021
  • Recently, research on perovskite semiconductor materials has been performed, and the evaluation of properties using surface treatment for this material is the basis for subsequent studies. We studied the results of surface treatment of perovskite thin films exposed to air for about 6 months by generating oxygen plasma with an atmospheric pressure plasma equipment. The reason for exposure for 6 months is that the perovskite thin film is made of organic and inorganic substances, so when exposed to air, the surface changes through reaction with oxygen or water vapor. Therefore, this change is to investigate whether it is possible to restore the original film. The surface shape and the ratio of elements were analyzed by varying the process time from 1 s to 1200 s in an oxygen plasma atmosphere. It was found that the crystal grains change over a process time of 5 s or more. In order to maintain the properties of the deposited film, it is the optimal process condition between 2 s and 5 s.

Effect of Oxygen for Diamond Film Synthesis with C-Hexane in Microwave Plasma Enhanced CVD Process

  • Han, Sang-Bo
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.983-989
    • /
    • 2012
  • The purpose of this paper is to decide the optimum synthesis conditions of polycrystalline diamond films according to the ratio of gas mixture. Diamond films were deposited with cyclo-hexane as a carbon precursor by the microwave plasma enhanced chemical vapor deposition process. The optimum oxygen ratio to cyclo-hexane was reached about 125 % under the fixed 0.3% c-hexane in hydrogen. Oxygen plays a role in etching the graphitic components of carbon sp2 bond effectively. By OES measurement, the best synthesis conditions found out about 12.5 % and 15.75 %, which is the emission intensity ratios of CH(B-X) and $H{\beta}$ on $H{\alpha}$, respectively. Also, the electron temperature was similar about 5,000 to 5,200 K in this work.

The Surface Effect of Polyimide Thin Film by Vapor Deposition Polymerization Method With Plasma Treatment (진공증착중합법에 의해 제조된 폴리이미드 박막의 플라즈마 처리에 의한 표면의 변화)

  • Kim, Hyeong-Gweon;Lee, Boong-Joo;Kim, Jong-Teak;Kim, Yong-Bong;Lee, Duck-Chool
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.5
    • /
    • pp.340-346
    • /
    • 1998
  • In this study, we intended to investigate aging effect of polyimide prepared by VDPD(vapor deposition polymerized method). The prepared polymide was treated by the oxygen and argon gas plasma. And we evaluated the polyimide treated by plasma from contact angle, surface leakage current, FT-IR and SEM. We know that the structure of polyimide at surface are changed to amide structure by plasma treating. It seems that strong energy of plasma causes breaking the molecular chin of the polyimide. And surface roughness increases with plasma treating time increased and sequentially the wettability and leakage current increases.

  • PDF

A Study on the Electrical Properties of ITO Thin Films with Various Oxygen Gas Flow Rate (산소 가스 유량비 변화에 따른 ITO 박막의 전기적 특성에 관한 연구)

  • Choi, Dong-H.;Keum, Min-J.;Jean, A.R.;Han, Jean-G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.3
    • /
    • pp.144-148
    • /
    • 2007
  • To prepare the transparent electrode for electronic devices such as flat panel or flexible displays, solar cells, and touch panels; tin doped $In_2O_3$ (ITO) films with low resistivity and a high transparency were fabricated using a facing target sputtering (FTS) system at the various oxygen gas flow rate. The carrier concentration and mobility of ITO films were measured by Hall Effect measurement. And the transmittance was measured using the UV-VIS spectrometer. As a result, we can obtain the ITO thin films prepared at 10% oxygen gas flow ratio, thickness 150 nm with transmittance 85% and resistivity $8.1{\times}10^{-4}{\Omega}cm$ and surface roughness 5.01 nm.

Sterilization of Scoria Powder by Corona Discharge Plasma (코로나 방전 플라즈마를 이용한 화산암재 분말 살균)

  • Jo, Jin Oh;Lee, Ho Won;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.386-391
    • /
    • 2014
  • Atmospheric-pressure nonthermal corona discharge plasma was applied to the sterilization of biologically contaminated scoria powder. Escherichia coli (E. coli) culture solution was uniformly sprayed throughout the scoria powder for artificial inoculation, which was well mixed to ensure uniformity of the batch. The effect of the key parameters such as discharge power, treatment time, type of gas and electrode distance on the sterilization efficiency was examined and discussed. The experimental results revealed that the plasma treatment was very effective for the sterilization of scoria powder; 5-min treatment at 15 W could sterilize more than 99.9% of E. coli inoculated into the scoria powder. Increasing the discharge power, treatment time or applied voltage led to an improvement in the sterilization efficiency. The effect of type of gas on the sterilization efficiency was in order of oxygen, synthetic air (20% oxygen) and nitrogen from high to low. The inactivation of E. coli under the influence of corona discharge plasma can be explained by cell membrane erosion or etching resulting from UV and reactive oxidizing species (oxygen radical, OH radical, ozone, etc.), and the destruction of E. coli cell membrane by the physical action of numerous corona streamers.

The Effect of Etching on Low-stress Mechanical Properties of Polypropylene Fabrics under Helium/Oxygen Atmospheric Pressure Plasma

  • Hwang, Yoon J.;An, Jae Sang;McCord, Marian G.;Park, Shin Woong;Kang, Bok Choon
    • Fibers and Polymers
    • /
    • v.4 no.4
    • /
    • pp.145-150
    • /
    • 2003
  • Polypropylene nonwoven fabrics were exposed to He/$O_2$ atmospheric pressure glow discharge plasma. Surface chemical analysis and contact angle measurement revealed the surface oxidation by formation of new functional groups after plasma treatment. Weight loss (%) measurement and scanning electron microscopy analysis showed a significant plasma etching effect. It was investigated in low-stress mechanical properties of the fabrics using Kawabata Evaluation System (KES-FB). The surface morphology change by plasma treatment increased surface friction due to an enhancement of fiber-to-fiber friction, resulting in change of other low-stress mechanical properties of fabric.

Comparison of E-ICP Effect for Large Area Plasma Source (대면적 플라즈마 소스에의 E-ICP 적용과 그 효과 비교)

  • 김진우;손민영;박세근;오범환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.608-611
    • /
    • 2000
  • Large area plasma source becomes important as the substrate size increases. In this work, four inductively coupled plasma(ICP) unit sources are distributed 2${\times}$2 array. E-ICP concept is applied to the 2${\times}$2 array ICP and its effect is examined. Characteristics of the plasma are measured, and photoresist etching is performed with oxygen plasma. Good etching characteristic in terms of etching rate and uniformity can be obtained with E-ICP.

  • PDF

RF and Optical properties of Graphene Oxide

  • Im, Ju-Hwan;Rani, J.R.;Yun, Hyeong-Seo;O, Ju-Yeong;Jeong, Yeong-Mo;Park, Hyeong-Gu;Jeon, Seong-Chan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.68.1-68.1
    • /
    • 2012
  • The best part of graphene is - charge-carriers in it are mass less particles which move in near relativistic speeds. Comparing to other materials, electrons in graphene travel much faster - at speeds of $10^8cm/s$. A graphene sheet is pure enough to ensure that electrons can travel a fair distance before colliding. Electronic devices few nanometers long that would be able to transmit charge at breath taking speeds for a fraction of power compared to present day CMOS transistors. Many researches try to check a possibility to make it a perfect replacement for silicon based devices. Graphene has shown high potential to be used as interconnects in the field of high frequency electrical devices. With all those advantages of graphene, we demonstrate characteristics of electrical and optical properties of graphene such as the effect of graphene geometry on the microwave properties using the measurements of S-parameter in range of 500 MHz - 40 GHz at room temperature condition. We confirm that impedance and resistance decrease with increasing the number of graphene layer and w/L ratio. This result shows proper geometry of graphene to be used as high frequency interconnects. This study also presents the optical properties of graphene oxide (GO), which were deposited in different substrate, or influenced by oxygen plasma, were confirmed using different characterization techniques. 4-6 layers of the polycrystalline GO layers, which were confirmed by High resolution transmission electron microscopy (HRTEM) and electron diffraction analysis, were shown short range order of crystallization by the substrate as well as interlayer effect with an increase in interplanar spacing, which can be attributed to the presence of oxygen functional groups on its layers. X-ray photoelectron Spectroscopy (XPS) and Raman spectroscopy confirms the presence of the $sp^2$ and $sp^3$ hybridization due to the disordered crystal structures of the carbon atoms results from oxidation, and Fourier Transform Infrared spectroscopy (FTIR) and XPS analysis shows the changes in oxygen functional groups with nature of substrate. Moreover, the photoluminescent (PL) peak emission wavelength varies with substrate and the broad energy level distribution produces excitation dependent PL emission in a broad wavelength ranging from 400 to 650 nm. The structural and optical properties of oxygen plasma treated GO films for possible optoelectronic applications were also investigated using various characterization techniques. HRTEM and electron diffraction analysis confirmed that the oxygen plasma treatment results short range order crystallization in GO films with an increase in interplanar spacing, which can be attributed to the presence of oxygen functional groups. In addition, Electron energy loss spectroscopy (EELS) and Raman spectroscopy confirms the presence of the $sp^2$ and $sp^3$ hybridization due to the disordered crystal structures of the carbon atoms results from oxidation and XPS analysis shows that epoxy pairs convert to more stable C=O and O-C=O groups with oxygen plasma treatment. The broad energy level distribution resulting from the broad size distribution of the $sp^2$ clusters produces excitation dependent PL emission in a broad wavelength range from 400 to 650 nm. Our results suggest that substrate influenced, or oxygen treatment GO has higher potential for future optoelectronic devices by its various optical properties and visible PL emission.

  • PDF