Browse > Article
http://dx.doi.org/10.22156/CS4SMB.2021.11.06.146

Effect of Perovskite Surface Treatment Using Oxygen Atmospheric Pressure Plasma  

Kim, Kyoung-Bo (Department of Metallurgical and Materials Engineering, Inha Technical College)
Lee, Jongpil (Department of Electrical and Electronic Engineering, Jungwon University)
Kim, Moojin (Department of IoT Electronic Engineering, Kangnam University)
Publication Information
Journal of Convergence for Information Technology / v.11, no.6, 2021 , pp. 146-153 More about this Journal
Abstract
Recently, research on perovskite semiconductor materials has been performed, and the evaluation of properties using surface treatment for this material is the basis for subsequent studies. We studied the results of surface treatment of perovskite thin films exposed to air for about 6 months by generating oxygen plasma with an atmospheric pressure plasma equipment. The reason for exposure for 6 months is that the perovskite thin film is made of organic and inorganic substances, so when exposed to air, the surface changes through reaction with oxygen or water vapor. Therefore, this change is to investigate whether it is possible to restore the original film. The surface shape and the ratio of elements were analyzed by varying the process time from 1 s to 1200 s in an oxygen plasma atmosphere. It was found that the crystal grains change over a process time of 5 s or more. In order to maintain the properties of the deposited film, it is the optimal process condition between 2 s and 5 s.
Keywords
Atmospheric pressure plasma; Oxygen atmosphere; Perovskite; Surface treatment; Grain;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Scappucci, C. Kloeffel, F. A. Zwanenburg, D. Loss, M. Myronov, J.-J. Zhang, S. De Franceschi, G. Katsaros & M. Veldhorst (2020). The germanium quantum information route. Nature Reviews Materials. DOI : 10.1038/s41578-020-00262-z   DOI
2 K. B. Kim, J. P. Lee & M. J. Kim (2020). Optical and electrical properties of AZO thin films deposited on OHP films. Journal of Convergence for Information Technology, 10(9), 28-34. DOI : 10.22156/CS4SMB.2020.10.09.028   DOI
3 K. B. Kim, J. P. Lee & M. J. Kim (2021). Characteristics by deposition and heat treatment of Cr and Al thin film on stainless steel. Journal of Convergence for Information Technology, 11(3), 167-173. DOI : 10.22156/CS4SMB.2021.11.03.167   DOI
4 K. B. Kim, J. P. Lee, M. J. Kim & Y. S. Min (2019). Characteristics of Excimer Laser-Annealed Polycrystalline Silicon on Polymer layers. Journal of Convergence for Information Technology, 9(3), 75-81. DOI : 10.22156/CS4SMB.2019.9.3.075   DOI
5 Hosono (2004). How we made the IGZO transistor. Nature Electronics, 1, 428. DOI : 10.1038/s41928-018-0106-0   DOI
6 M. J. Kim (2021). Atmospheric Pressure Plasma Etching Technology for Forming Circular Holes in Perovskite Semiconductor Materials. Journal of Convergence for Information Technology, 11(2), 10-15. DOI : 10.22156/CS4SMB.2021.11.02.010   DOI
7 E. H. Jung, N. J. Jeon, E. Y. Park, C. S. Moon, T. J. Shin, T. Y. Yang, J. H. Noh & J. W. Seo (2019). Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 567, 511-515. DOI : 10.1038/s41586-019-1036-3   DOI
8 H. Khachatryan, Y. H. Kim, K. B. Kim, H. J. Yang & M. J. Kim (2019). Direct etching of perovskite film by electron-beam scanning. Materials Science in Semiconductor Processing, 90, 171-181. DOI : 10.1016/j.mssp.2018.10.022   DOI
9 J. Talghader & J. S. Smith (1995). Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multilayer optical cavities. Applied Physics Letters, 66, 335-337. DOI : 10.1063/1.114204   DOI
10 G. Signorello, E. Lortscher, P.A. Khomyakov, S. Karg, D.L. Dheeraj, B. Gotsmann, H. Weman & H. Riel (2014). Inducing a direct-to-pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress. Nature Communications, 5, 3655. DOI : 10.1038/ncomms4655   DOI
11 K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano & H. Hosono (2004). Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 432, 488-492. DOI : 10.1038/nature03090   DOI
12 H. P. Kim, M. J. Kim, K. B. Kim, H. Khachatryan & J. Jang (2017). Properties of atmospheric hydrogen-plasma-treated CH3NH3PbI3 perovskite films. Surface & Coatings Technology, 330, 228-233. DOI : 10.1016/j.surfcoat.2017.09.002   DOI
13 H. Khachatryan, H. P. Kim, S. N. Lee, H. K. Kim, M. J. Kim, K. B. Kim & J. Jang (2018). Novel method for dry etching CH3NH3PbI3 perovskite films utilizing atmospheric-hydrogen -plasma. Materials Science in Semiconductor Processing, 75, 1-9. DOI : 10.1016/j.mssp.2017.11.019   DOI
14 G. Pacchioni (2021). Highly efficient perovskite LEDs. Nature Reviews Materials, 6, 108. DOI : 10.1038/s41578-021-00280-5   DOI
15 A. N. Thiessen, M. Ha, R. W. Hooper, H. Yu, A. O. Oliynyk, J. G. C. Veinot & V. K. Michaelis (2019). Silicon Nanoparticles: Are They Crystalline from the Core to the Surface?. Chemistry of Materials, 31(3), 678-688. DOI : 10.1021/acs.chemmater.8b03074   DOI