Browse > Article
http://dx.doi.org/10.11626/KJEB.2022.40.4.641

Effect of plasma treatment using underwater non-thermal dielectric barrier discharge to remove antibiotics added to fish farm effluent  

Kyu Seok Cho (Inland Fisheries Industrial Research Institute of Chung Cheong Buk-do)
Han Seung Kang (MS BioLab)
Publication Information
Korean Journal of Environmental Biology / v.40, no.4, 2022 , pp. 641-650 More about this Journal
Abstract
The purpose of this study was to compare the efficiency of air and oxygen injected into the underwater non-thermal dielectric barrier discharge plasma (DBD plasma) device used to remove five types of antibiotics (tetracycline, doxycycline, oxytetracycline, clindamycin, and erythromycin) artificially contained in the fish farm discharge water. The voltage given to generate DBD plasma was 27.8 kV, and the measurement intervals were 0, 0.5, 1, 2, 4, 8, 16 and 32 minutes. Tetracycline antibiotics significantly decreased in 4 minutes when air was injected and were reduced in 30 seconds when oxygen was injected. After the introduction of air and oxygen at 32 minutes, 78.1% and 95.8% of tetracycline were removed, 77.1% and 96.3% of doxycycline were removed, and 77.1% and 95.5% of oxytetracycline were removed, respectively. In air and oxygen, 59.6% and 83.0% of clindamycin and 53.3% and 74.3% of erythromycin were removed, respectively. The two antibiotics showed lower removal efficiency than tetracyclines. In conclusion, fish farm discharge water contains five different types of antibiotics that can be reduced using underwater DBD plasma, and oxygen gas injection outperformed air in terms of removal efficiency.
Keywords
underwater non-thermal DBD plasma; effluent; antibiotics; air; oxygen;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Jin G, G Pingdao, Y Li and Z Fangchuan. 2013. Degradation of dye wastewater by ns-pulse DBD plasma. Plasma Sources Sci. Technol. 15:928. https://doi.org/10.1088/1009-0630/15/9/18   DOI
2 Jo JO, SB Lee and YS Mok. 2013. Decolorization of Azo dyeing wastewater using underwater dielectric barrier discharge plasma. Appl. Chem. Eng. 24:544-550.
3 Joshi RP and SM Thagard. 2013. Streamer-like electrical discharges in water: Part II. Environmental applications. Plasma Chem. Plasma Process. 33:17-49. https://doi.org/10.1007/s11090-013-9436-x   DOI
4 Jovic MS, BP Dojcinovic, VV Kovacevic, BM Obradovic, MM Kuraica, UM Gasic and GM Roglic. 2014. Effect of different catalysts on mesotrione degradation in water falling film DBD reactor. Chem. Eng. J. 248:63-70. https://doi.org/10.1016/j.cej.2014.03.031   DOI
5 Kim DY. 2009. A study on the development of eco-plasma system and advanced wastewater treatment. MS Thesis, Seoul National University of Technology. Seoul. pp. 1-81.
6 Kim ES. 2010. Oral antimicrobial therapy. Korean J. Med. 78:575-578.
7 Kim JH, CK Park, MY Kim and SG Ahn. 2008. Contamination of veterinary antibiotics and antimicrobials in Han River Basin. J. Korean Soc. Environ. Anal. 11:109-118.
8 Kim KY, NW Paik, YH Kim and KH Yoo. 2018. Bactericidal efficacy of non-thermal DBD plasma on Staphylococcus aureus and Escherichia coli. J. Korean Soc. Occup. Environ. Hyg. 28:61-79. https://doi.org/10.15269/JKSOEH.2018.28.1.61   DOI
9 Kim S, JN Jensen, DS Aga and AS Weber. 2007. Tetracycline as a selector for resistant bacteria in activated sludge. Chemosphere 66:1643-1651. https://doi.org/10.1016/j.chemosphere.2006.07.066   DOI
10 Kim SD, TH Hwang, SY Kim, SW Kim, CH Lim, HJ Song, CS Yang, KS Kim, DY Chang and DI Jang. 2011. Studies on Destruction of Refractory Organic Matter using Dielectric Barrier Discharging System. NIER-RP2011-1325. National Institute of Environmental Research. Incheon, Korea. pp. 1-33.
11 Kim SK. 2013. A study on characteristics of antibiotics degradation using dielectric barrier discharge plasma reactor. MS Thesis, Jeju National University. Jeju, Korea. pp. 1-156.
12 Lee HR, MH Chae, CG Lee, BJ Lim, JH Kim, YH Cho, SH Hong, JJ Lee, JH Yoon, JY Yoon, SU Kim, JY Mang, EA Tae, KG Min, HY Yoon, GB Kil, BN Seol, JY Choe and SU Cheon. 2018. Monitoring of Pharmaceutical Residues in Water Samples from the Livestock Area (I). Geum River Water Environment Research Center, National Institute of Environmental Research. Okcheon, Korea. pp. 1-33.
13 Locke BR, M Sato, P Sunka, MR Hoffmann and JS Chang. 2006. Electrohydraulic discharge and nonthermal plasma for water treatment. Ind. Eng. Chem. Res. 45:882-905. https://doi.org/10.1021/ie050981u   DOI
14 Magureanu M, D Piroi, F Gherendi, NB Mandache and V Parvulescu. 2008. Decomposition of methylene blue in water by corona discharges. Plasma Chem. Plasma Process. 28:677-688. https://doi.org/10.1007/s11090-008-9155-x   DOI
15 Park YS. 2013. Phenol removal using oxygen-plasma discharge in the water. J. Environ. Sci. Int. 22:915-923. https://doi.org/10.5322/JESI.2013.22.7.915   DOI
16 Misra N, S Pankaj, T Walsh, F O'Regan, P Bourke and P Cullen. 2014. In-package nonthermal plasma degradation of pesticides on fresh produce. J. Hazard. Mater. 271:33-40. https://doi.org/10.1016/j.jhazmat.2014.02.005   DOI
17 Mok YS, JO Jo, HJ Lee, HT Ahn and JT Kim. 2007. Application of dielectric barrier discharge reactor immersed in wastewater to the oxidative degradation of organic contaminant. Plasma Chem. Plasma Process. 27:51-64. https://doi.org/10.1007/s11090-006-9043-1   DOI
18 Nguyen PTT, HT Nguyen, UNP Tran and HM Bui. 2021. Removal of antibiotics from real hospital wastewater by cold plasma technique. J. Chem. 2021:9981738. https://doi.org/10.1155/2021/9981738   DOI
19 Pekarek S. 2003. Non-thermal plasma ozone generation. Acta Polytech. 43:47-51. https://doi.org/10.14311/498   DOI
20 Salyers AA, A Gupta and Y Wang. 2004. Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol. 12:412-416. https://doi.org/10.1016/j.tim.2004.07.004   DOI
21 Sarangapani C, N Misra, V Milosavljevic, P Bourke, F O'Regan and P Cullen. 2016. Pesticide degradation in water using atmospheric air cold plasma. J. Water Process Eng. 9:225-232. https://doi.org/10.1016/j.jwpe.2016.01.003   DOI
22 Sato M, T Tokutake, T Ohshima and AT Sugiarto. 2008. Aqueous phenol decomposition by pulsed discharge on the water surface. IEEE Trans. Ind. Appl. 44:1397-1402. https://doi.org/10.1109/TIA.2008.2002210   DOI
23 Schar D, EY Klein, R Laxmnarayan, M Gilbert and TPV Boeckel. 2020. Global trends in antimicrobial use in aquaculture. Sci. Rep. 10:1-9. https://doi.org/10.1038/s41598-020-78849-3   DOI
24 Sun MY, JO Jo and HJ Lee. 2008. Dielectric barrier discharge plasma-induced photocatalysis and ozonation for the treatment of wastewater. Plasma Sci. Technol. 10:100-105. https://doi.org/10.1088/1009-0630/10/1/21   DOI
25 Shin GW, SK Choi, SK Kim, Q Zhu, KG Weon and SI Lee. 2019. Characteristics of phenol degradation by suing underwater dielectric barrier discharge plasma. J. Korean Soc. Water Wastew. 33:243-250. https://doi.org/10.11001/jksww.2019.33.4.243   DOI
26 Sim WJ, JW Lee and JE Oh. 2010. Occurrence and fate of pharmaceuticals in wastewater treatment plants and rivers in Korea. Environ. Pollut. 158:1938-1947. https://doi.org/10.1016/j.envpol.2009.10.036   DOI
27 Stratton GR, CL Bellona, F Dai, TM Holsen and SM Thagard. 2015. Plasma -based water treatment: Conception and application of a new general principle for reactor design. Chem. Eng. J. 273:543-550. https://doi.org/10.1016/j.cej.2015.03.059   DOI
28 Wardenier N, P Vanraes, A Nikiforov, SW van Hulle and C Leys. 2019. Removal of micropollutants from water in a continuous-flow electrical discharge reactor. J. Hazard. Mater. 362:238-245. https://doi.org/10.1016/j.jhazmat.2018.08.095   DOI
29 Woodward KN. 1996. The regulation of fish medicines-UK and European Union aspects. Aquac. Res. 27:725-734. https://doi.org/10.1046/j.1365-2109.1996.00782.x   DOI
30 Yao X, JS Guo and YT Zhang. 2022. Unveiling pathways of oxytetracycline degradation induced by cold atmospheric plasma. AIP Adv. 12:1-10. https://doi.org/10.1063/5.0085605   DOI
31 Zhang JJ, TH Kwon, SB Kim and DK Jeong. 2018. Plasma farming: Non-thermal dielectric barrier discharge plasma technology for improving the growth of soybean sprouts and chickens. Plasma 1:285-296. https://doi.org/10.3390/plasma1020025   DOI
32 Cook M, E Moloto and C Anerson. 1989. Fluorochrome labelling in roman period skeletons from Dakhleh oasis, Egypt. Am. J. Phys. Anthropol. 80:137-143. https://doi.org/10.1002/ajpa.1330800202   DOI
33 Ash RJ, B Mauck and M Morgan. 2002. Antibiotic resistance of gram-negative bacteria in rivers, United States. Emerg. Infect. Dis. 8:713-716. https://doi.org/10.3201/eid0807.010264   DOI
34 Braithwaite NSJ. 2000. Introduction to gas discharges. Plasma Sources Sci. Technol. 9:517. https://doi.org/10.1088/0963-0252/9/4/307   DOI
35 Conrads H and M Schmidt. 2000. Plasma generation and plasma sources. Plasma Sources Sci. Technol. 9:441. https://doi.org/10.1088/0963-0252/9/4/301   DOI
36 Fang C, S Wang, H Xu and Q Huang. 2022. Degradation of tetracycline by atmospheric pressure non-thermal plasma: Enhanced performance, degradation mechanism, and toxicity evaluation. Sci. Total Environ. 812:15. https://doi.org/10.1016/j.scitotenv.2021.152455   DOI
37 Feng J, Z Zheng, Y Sun, J Luan, Z Wang, L Wang and J Feng. 2008. Degradation of diuron in aqueous solution by dielectric barrier discharge. J. Hazard. Mater. 154:1081-1089. https://doi.org/10.1016/j.jhazmat.2007.11.013   DOI
38 Gushchin A, VI Grinevich, GI Gusev and EY Kvitkova. 2018. Removal of oil products from water using a combined process of sorption and plasma exposure to DBD. Plasma Chem. Plasma Process. 38:1021-1033. https://doi.org/10.1007/s11090-018-9912-4   DOI
39 Haixia W, F Zhi and X Yanhua. 2015. Degradation of aniline wastewater using dielectric barrier discharges at atmospheric pressure. Plasma Sources Sci. Technol. 17:228-234. https://doi.org/10.1088/1009-0630/17/3/10   DOI
40 Hwang IG. 2011. International Cooperation for Controlling Foodborne Antimicrobial Resistance. National Institute of Food and Drug Safety Evaluation. Cheongju, Korea.
41 Iwane T, T Urase and K Yamamoto. 2001. Possible impact of treated wastewater discharge on incidence of antibiotic resistant bacteria in river water. Water Sci. Technol. 43:91-99. https://doi.org/10.2166/wst.2001.0077   DOI