DOI QR코드

DOI QR Code

Effect of Oxygen for Diamond Film Synthesis with C-Hexane in Microwave Plasma Enhanced CVD Process

  • Han, Sang-Bo (Dept. of Electrical Engineering, Kyungnam University)
  • Received : 2012.05.10
  • Accepted : 2012.08.21
  • Published : 2012.11.01

Abstract

The purpose of this paper is to decide the optimum synthesis conditions of polycrystalline diamond films according to the ratio of gas mixture. Diamond films were deposited with cyclo-hexane as a carbon precursor by the microwave plasma enhanced chemical vapor deposition process. The optimum oxygen ratio to cyclo-hexane was reached about 125 % under the fixed 0.3% c-hexane in hydrogen. Oxygen plays a role in etching the graphitic components of carbon sp2 bond effectively. By OES measurement, the best synthesis conditions found out about 12.5 % and 15.75 %, which is the emission intensity ratios of CH(B-X) and $H{\beta}$ on $H{\alpha}$, respectively. Also, the electron temperature was similar about 5,000 to 5,200 K in this work.

Keywords

References

  1. B. V. Spitsyn, L. L. Bouilov, and B. V. Derjaguin, J. Crystal Grow. 52 (1981) 219. https://doi.org/10.1016/0022-0248(81)90197-4
  2. Shr-Ming Huang, Franklin Chau-Nan Hong, Surface and Coatings Technology 200 (2006) 3151. https://doi.org/10.1016/j.surfcoat.2005.07.033
  3. W.D. Fan, K. Jagannadham, B.C. Goral, Surface and Coatings Technology 81 (1996) 172. https://doi.org/10.1016/0257-8972(95)02476-X
  4. O.A. Williams, Diamond and Related Materials 20 (2011) 621. https://doi.org/10.1016/j.diamond.2011.02.015
  5. A. Deachana, D. Boonyawan, B. Yodsombat, Surface and Coatings Technology 203 (2009) 2743. https://doi.org/10.1016/j.surfcoat.2009.02.132
  6. P. Ayala, R. Arenal, M. Rümmeli, A. Rubio, T. Pichler, Carbon 48 (2010) 575. https://doi.org/10.1016/j.carbon.2009.10.009
  7. Menghe Miao, Carbon 49 (2011) 3755. https://doi.org/10.1016/j.carbon.2011.05.008
  8. Yasar Gurbuz, Weng Poo Kang, Jimmy L. Davidson, David V. Kerns, and Q. Zhou, IEEE Trans. Power Electronics 20 (2005) 1. https://doi.org/10.1109/TPEL.2004.839883
  9. R. Kalish, Diamond and Related Materials 10 (2001) 1749. https://doi.org/10.1016/S0925-9635(01)00426-5
  10. Young Yun, Tetsuro Maki, and Takeshi Kobayashi, J. Appl. Phys. 82 (1997) 3422. https://doi.org/10.1063/1.365658
  11. Sunwoo Lee, SangYeob Na, J. Electrical Engineering & Technology 6 (2011) 280. https://doi.org/10.5370/JEET.2011.6.2.280
  12. Qingwen Li, Hao Yan, Jin Zhang, Zhongfan Liu, Carbon 42 (2004) 829. https://doi.org/10.1016/j.carbon.2004.01.070
  13. X.J. Hu, J.S. Ye, H.J. Liu, H. Hu, X.H. Chen, Diamond and Related Materials 20 (2011) 246. https://doi.org/10.1016/j.diamond.2010.12.014
  14. C.J. Tang, A. J. S. Fernandes, F. Costa, J. L. Pinto, Vacuum 85 (2011) 1130. https://doi.org/10.1016/j.vacuum.2011.01.024
  15. D. Saito, H. Isshiki, T. Kimira, Diamond and Related Materials 18 (2009) 56. https://doi.org/10.1016/j.diamond.2008.09.024
  16. D.A. Tucker, D.-K. Seo, M.-H. Whangbo, F.R. Sivazlian, B.R. Stoner, S.P. Bozeman, A.T. Sowers, R.J. Nemanich, J.T. Glass, Surface Science 334 (1995) 179. https://doi.org/10.1016/0039-6028(95)00469-6
  17. Y. Liao, C.H. Li, Z.Y. Ye, C. Chang, G.Z. Wang, R.C. Fang, Diamond and Related Materials 9 (2000) 1716. https://doi.org/10.1016/S0925-9635(00)00283-1
  18. Duosheng Li, Dunwen Zuo, Wenzhung Lu, Rongfa Chen, Bingkun Xiang, Min Wang, Solid State Ionics 179 (2008) 1263. https://doi.org/10.1016/j.ssi.2008.01.066
  19. E Cappelli, S Orlando, G Mattei, A Armigliato, Surface and Coatings Technology, 180-181 (2004) 184. https://doi.org/10.1016/j.surfcoat.2003.10.041
  20. H. Inaba, S. Fujimaki, K. Furusawa, S. Todoroki, Surface and Coatings Tech. 193 (2005) 277. https://doi.org/10.1016/j.surfcoat.2004.07.056
  21. S Gupta, G Morell, R.S Katiyar, D.R Gilbert, R.K Singh, Diamond and Related Materials 8 (1999) 185. https://doi.org/10.1016/S0925-9635(98)00260-X
  22. Toshiki Tsubota, Shintaro Ida, Naoki Okada, Masanori Nagata, Yasumichi Matsumoto, Nobumitsu Yatsushiro, Surface and Coatings Technology 169-170 (2003) 262. https://doi.org/10.1016/S0257-8972(03)00033-1
  23. F. J. Kampas, J. Appl. Phys. 54 (1983) 2276. https://doi.org/10.1063/1.332382
  24. E. Staryga, G. W. Bak, K. Fabisiak, L. Klimek, A. Rylski, A. Olborska, M. Kozanecki, J. Grabarczyk, Vacuum 85 (2010) 518 https://doi.org/10.1016/j.vacuum.2010.01.025
  25. A. Grigonis, V. Sablinskas, M. Silinskas, D. Tribandis, Vacuum 75 (2004) 261. https://doi.org/10.1016/j.vacuum.2004.03.006
  26. S.R.J. Pearce, S.J. Henley, F. Claeyssens, P.W. May, K.R. Hallam, J.A. Smith, K.N. Rosser, Diamond and Related Materials 13 (2004) 661. https://doi.org/10.1016/j.diamond.2003.08.027
  27. L. Yang, P.W. May, L. Yin, J.A. Smith, K.N. Rosser, Diamond and Related Materials 16 (2007) 725. https://doi.org/10.1016/j.diamond.2006.11.010
  28. R.T Rozbicki, V.K Sarin, Thin Solid Films 332 (1998) 87. https://doi.org/10.1016/S0040-6090(98)01028-1
  29. Marcus Asmann, Joachim Heberlein, Emil Pfender, Diamond and Related Materials 8 (1999) 1. https://doi.org/10.1016/S0925-9635(98)00365-3
  30. A. Qayyum, R. Ahmad, S.A. Ghauri, A. Waheed, M. Zakaullah Vacuum 80 (2006) 574. https://doi.org/10.1016/j.vacuum.2005.09.007
  31. T. Sharda, T.Soga, T. Jimbo, and M.Umeno, Diamond and Related Materials 9 (2000) 1331. https://doi.org/10.1016/S0925-9635(00)00247-8
  32. Sathyaharish Jeedigunta, Zhenqing Xu, Makoto Hirai, Priscila Spagnol, Ashok Kumar, Diamond and Related Materials 17 (2008) 1994. https://doi.org/10.1016/j.diamond.2008.06.001
  33. X. M. Meng et al., Int. J. Refractory Metals and Hard Materials 26 (2008) 485. https://doi.org/10.1016/j.ijrmhm.2007.11.006
  34. Y. S. Li, Y. Tang, Q. Yang, S. Shimada, K. Y. Lee, A. Hirose, Int. J. Refractory Metals and Hard Materials 26 (2008) 465. https://doi.org/10.1016/j.ijrmhm.2007.11.001
  35. A. Bendavid, P.J. Martin, L. Randeniya, M.S. Amin, Diamond and Related Materials 18 (2009) 66. https://doi.org/10.1016/j.diamond.2008.09.021
  36. Stephen J. Harris and Anita M. Weiner, J. Appl. Phys. 67 (1990) 6520. https://doi.org/10.1063/1.345128