• 제목/요약/키워드: Oxide thickness

Search Result 1,520, Processing Time 0.026 seconds

Direct Bonding of Si(100)/NiSi/Si(100) Wafer Pairs Using Nickel Silicides with Silicidation Temperature (열처리 온도에 따른 니켈실리사이드 실리콘 기판쌍의 직접접합)

  • Song, O-Seong;An, Yeong-Suk;Lee, Yeong-Min;Yang, Cheol-Ung
    • Korean Journal of Materials Research
    • /
    • v.11 no.7
    • /
    • pp.556-561
    • /
    • 2001
  • We prepared a new a SOS(silicon-on-silicide) wafer pair which is consisted of Si(100)/1000$\AA$-NiSi Si (100) layers. SOS can be employed in MEMS(micro- electronic-mechanical system) application due to low resistance of the NiSi layer. A thermally evaporated $1000\AA$-thick Ni/Si wafer and a clean Si wafer were pre-mated in the class 100 clean room, then annealed at $300~900^{\circ}C$ for 15hrs to induce silicidation reaction. SOS wafer pairs were investigated by a IR camera to measure bonded area and probed by a SEM(scanning electron microscope) and TEM(transmission electron microscope) to observe cross-sectional view of Si/NiSi. IR camera observation showed that the annealed SOS wafer pairs have over 52% bonded area in all temperature region except silicidation phase transition temperature. By probing cross-sectional view with SEM of magnification of 30,000, we found that $1000\AA$-thick uniform NiSi layer was formed at the center area of bonded wafers without void defects. However we observed debonded area at the edge area of wafers. Through TEM observation, we found that $10-20\AA$ thick amourphous layer formed between Si surface and NiSix near the counter part of SOS. This layer may be an oxide layer and lead to degradation of bonding. At the edge area of wafers, that amorphous layer was formed even to thickness of $1500\AA$ during annealing. Therefore, to increase bonding area of Si NiSi ∥ Si wafer pairs, we may lessen the amorphous layers.

  • PDF

A Study on Bismuth tri-iodide for X-ray direct and digital imagers (직접방식 엑스선 검출기를 위한 $BiI_3$ 특성 연구)

  • Lee, S.H.;Kim, Y.S.;Kim, Y.B.;Jung, S.H.;Park, J.K.;Jung, W.B.;Jang, M.Y.;Mun, C.W.;Nam, S.H.
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.2
    • /
    • pp.27-31
    • /
    • 2009
  • Now a days, the Medical X-ray equipments has become digitalized from analog type such as film, cassette to CR, DR. And many scientists are still researching and developing the Medical X-ray equipment. In this study, we used the Bismuth tri-iodide to conversion material for digital X-ray equipments and we couldn't get the satisfying result than previous study, but it opened new possibility to cover the disadvantage of a-Se is high voltage aplly and difficultness of make. In this paper, we use $BiI_3$ powder(99.99%) as x-ray conversion material and make films that have thickness of 200um and the film size is $3cm{\times}3cm$. Also, we deposited an ITO(Indium Tin Oxide) electrode as top electrode and bottom electrode using a Magnetron Sputtering System. To evaluate a characteristics of the produced films, an electrical and structural properties are performed. Through a SEM analysis, we confirmed a surface and component part. And to analyze the electrical properties, darkcurrent, sensitivity and SNR(Signal to Noise Ratio) are measured. Darkcurrent is $1.6nA/cm^2$ and sensitivity is $0.629nC/cm^2$ and this study shows that the electrical properties of x-ray conversion material that made by screen printing method are similar to PVD method or better than that. This results suggest that $BiI_3$ is suitable for a replacement of a-Se because of the reduced manufacture processing and improved yield.

  • PDF

Evaluation of the radiopacity and cytotoxicity of resinous root canal sealers (레진계 근관충전실러의 방사선 불투과성 및 세포 독성에 대한 평가)

  • Kim, Chang-Kyu;Ryu, Hyun-Wook;Chang, Hoon-Sang;Lee, Byung-Do;Min, Kyung-San;Hong, Chan-Ui
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.5
    • /
    • pp.419-425
    • /
    • 2007
  • The aim of this study was to evaluate the radiopacity and cytotoxicity of three resin-based (AH 26, EZ fill and AD Seal), a zinc oxide-eugenol-based (ZOB Seal), and a calcium hydroxide-based (Sealapex) root canal sealers. Specimens, 10 mm in diameter and 1 mm in thickness, were radiographed simultaneously with an aluminum step wedge using occlusal films, according to ISO 6876/2001 standards. Radiographs were digitized, and the radiopacity of sealers was compared to the different thicknesses of the aluminum step wedge, using the Scion image software. Using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the cytotoxicity of each material was determined in immortalized human periodontal ligament (IPDL) cells. The results demonstrated that EZ fill was the most radiopaque sealer, while Sealapex was the least radiopaque (p < 0.05). AH 26, AD Seal and ZOB Seal presented intermediate radiopacity values. All the materials evaluated, except for Sealapex, presented the minimum radiopacity required by ISO standards. The cell viabilities of resin-based root canal sealers were statistically higher than that of other type of root canal sealers through the all experimental time. Further, EZ fill showed statistically lower cell viability in 24 and 48 hours compared to AD Seal and in 72 hours compared to all other resin-based root canal sealers. However, there was no correlation between the radiopacity and cytotoxicity of three resin-based root canals sealers (p > 0.05). These results indicate that resin-based root canal sealer is more biocompatible and has advantage in terms of radiopacity.

Nano-mechanical Properties of Nanocrystal of HfO2 Thin Films for Various Oxygen Gas Flows and Annealing Temperatures (RF Sputtering의 증착 조건에 따른 HfO2 박막의 Nanocrystal에 의한 Nano-Mechanics 특성 연구)

  • Kim, Joo-Young;Kim, Soo-In;Lee, Kyu-Young;Kwon, Ku-Eun;Kim, Min-Suk;Eum, Seoung-Hyun;Jung, Hyun-Jean;Jo, Yong-Seok;Park, Seung-Ho;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.5
    • /
    • pp.273-278
    • /
    • 2012
  • Over the last decade, the hafnium-based gate dielectric materials have been studied for many application fields. Because these materials had excellent behaviors for suppressing the quantum-mechanical tunneling through the thinner dielectric layer with higher dielectric constant (high-K) than $SiO_2$ gate oxides. Although high-K materials compensated the deterioration of electrical properties for decreasing the thickness of dielectric layer in MOSFET structure, their nano-mechanical properties of $HfO_2$ thin film features were hardly known. Thus, we examined nano-mechanical properties of the Hafnium oxide ($HfO_2$) thin film in order to optimize the gate dielectric layer. The $HfO_2$ thin films were deposited by rf magnetron sputter using hafnium (99.99%) target according to various oxygen gas flows. After deposition, the $HfO_2$ thin films were annealed after annealing at $400^{\circ}C$, $600^{\circ}C$ and $800^{\circ}C$ for 20 min in nitrogen ambient. From the results, the current density of $HfO_2$ thin film for 8 sccm oxygen gas flow became better performance with increasing annealing temperature. The nano-indenter and Weibull distribution were measured by a quantitative calculation of the thin film stress. The $HfO_2$ thin film after annealing at $400^{\circ}C$ had tensile stress. However, the $HfO_2$ thin film with increasing the annealing temperature up to $800^{\circ}C$ had changed compressive stress. This could be due to the nanocrystal of the $HfO_2$ thin film. In particular, the $HfO_2$ thin film after annealing at $400^{\circ}C$ had lower tensile stress, such as 5.35 GPa for the oxygen gas flow of 4 sccm and 5.54 GPa for the oxygen gas flow of 8 sccm. While the $HfO_2$ thin film after annealing at $800^{\circ}C$ had increased the stress value, such as 9.09 GPa for the oxygen gas flow of 4 sccm and 8.17 GPa for the oxygen gas flow of 8 sccm. From these results, the temperature dependence of stress state of $HfO_2$ thin films were understood.

Electrochemical Characteristics of Anode-supported Solid Oxide Fuel Cells (연료극 지지형 고체산화물 연료전지의 전기화학적 특성)

  • Yoon Sung Pil;Han Jonghee;Nam Suk Woo;Lim Tae-Hoon;Hong Seong-Ahn;Hyun Sang-Hoon;Yoo Young-Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.2
    • /
    • pp.58-64
    • /
    • 2001
  • YSZ ($8mol\%$ yttria-stabilized zirconia)-modified LSM $(La_{0.85}Sr_{0.15}MnO_3)$ composite cathodes were fabricated by formation of YSZ film on triple phase boundary (TPB) of LSM/YSZ/gas. The YSZ coating film greatly enlarged electrochemical reaction sites from the increase of additional TPB. The composite cathode was formed on thin YSZ electrolyte (about 30 Um thickness) supported on an anode and then I-V characterization and AC impedance analyses were performed at temperature between $700^{\circ}C\;and\;800^{\circ}C$. As results of the impedance analysis on the cell at $800^{\circ}C$ with humidified hydrogen as the fuel and air as the oxidant, R1 around the frequency of 1000 Hz represents the anode Polarization. R2 around the frequency of 100Hz indicates the cathode polarization, and R3 below the frequency of 10 Hz is the resistance of gas phase diffusion through the anode. The cell with the composite cathode produced power density of $0.55\;W/cm^2\;and\;1W/cm^2$ at air and oxygen atmosphere, respectively. The I-V curve could be divided into two parts showing distinctive behavior. At low current density region (part I) the performance decreased steeply and at high current density region (part II) the performance decreased gradually. At the part I the performance decrease was especially resulted from the large cathode polarization, while at the part H the performance decrease related to the electrolyte polarization.

Preparationand Characterization of Rutile-anatase Hybrid TiO2 Thin Film by Hydrothermal Synthesis

  • Kwon, Soon Jin;Song, Hoon Sub;Im, Hyo Been;Nam, Jung Eun;Kang, Jin Kyu;Hwang, Taek Sung;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.306-313
    • /
    • 2014
  • Nanoporous $TiO_2$ films are commonly used as working electrodes in dye-sensitized solar cells (DSSCs). So far, there have been attempts to synthesize films with various $TiO_2$ nanostructures to increase the power-conversion efficiency. In this work, vertically aligned rutile $TiO_2$ nanorods were grown on fluorinated tin oxide (FTO) glass by hydrothermal synthesis, followed by deposition of an anatase $TiO_2$ film. This new method of anatase $TiO_2$ growth avoided the use of a seed layer that is usually required in hydrothermal synthesis of $TiO_2$ electrodes. The dense anatase $TiO_2$ layer was designed to behave as the electron-generating layer, while the less dense rutile nanorods acted as electron-transfer pathwaysto the FTO glass. In order to facilitate the electron transfer, the rutile phase nanorods were treated with a $TiCl_4$ solution so that the nanorods were coated with the anatase $TiO_2$ film after heat treatment. Compared to the electrode consisting of only rutile $TiO_2$, the power-conversion efficiency of the rutile-anatase hybrid $TiO_2$ electrode was found to be much higher. The total thickness of the rutile-anatase hybrid $TiO_2$ structures were around $4.5-5.0{\mu}m$, and the highest power efficiency of the cell assembled with the structured $TiO_2$ electrode was around 3.94%.

COATED PARTICLE FUEL FOR HIGH TEMPERATURE GAS COOLED REACTORS

  • Verfondern, Karl;Nabielek, Heinz;Kendall, James M.
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.603-616
    • /
    • 2007
  • Roy Huddle, having invented the coated particle in Harwell 1957, stated in the early 1970s that we know now everything about particles and coatings and should be going over to deal with other problems. This was on the occasion of the Dragon fuel performance information meeting London 1973: How wrong a genius be! It took until 1978 that really good particles were made in Germany, then during the Japanese HTTR production in the 1990s and finally the Chinese 2000-2001 campaign for HTR-10. Here, we present a review of history and present status. Today, good fuel is measured by different standards from the seventies: where $9*10^{-4}$ initial free heavy metal fraction was typical for early AVR carbide fuel and $3*10^{-4}$ initial free heavy metal fraction was acceptable for oxide fuel in THTR, we insist on values more than an order of magnitude below this value today. Half a percent of particle failure at the end-of-irradiation, another ancient standard, is not even acceptable today, even for the most severe accidents. While legislation and licensing has not changed, one of the reasons we insist on these improvements is the preference for passive systems rather than active controls of earlier times. After renewed HTGR interest, we are reporting about the start of new or reactivated coated particle work in several parts of the world, considering the aspects of designs/ traditional and new materials, manufacturing technologies/ quality control quality assurance, irradiation and accident performance, modeling and performance predictions, and fuel cycle aspects and spent fuel treatment. In very general terms, the coated particle should be strong, reliable, retentive, and affordable. These properties have to be quantified and will be eventually optimized for a specific application system. Results obtained so far indicate that the same particle can be used for steam cycle applications with $700-750^{\circ}C$ helium coolant gas exit, for gas turbine applications at $850-900^{\circ}C$ and for process heat/hydrogen generation applications with $950^{\circ}C$ outlet temperatures. There is a clear set of standards for modem high quality fuel in terms of low levels of heavy metal contamination, manufacture-induced particle defects during fuel body and fuel element making, irradiation/accident induced particle failures and limits on fission product release from intact particles. While gas-cooled reactor design is still open-ended with blocks for the prismatic and spherical fuel elements for the pebble-bed design, there is near worldwide agreement on high quality fuel: a $500{\mu}m$ diameter $UO_2$ kernel of 10% enrichment is surrounded by a $100{\mu}m$ thick sacrificial buffer layer to be followed by a dense inner pyrocarbon layer, a high quality silicon carbide layer of $35{\mu}m$ thickness and theoretical density and another outer pyrocarbon layer. Good performance has been demonstrated both under operational and under accident conditions, i.e. to 10% FIMA and maximum $1600^{\circ}C$ afterwards. And it is the wide-ranging demonstration experience that makes this particle superior. Recommendations are made for further work: 1. Generation of data for presently manufactured materials, e.g. SiC strength and strength distribution, PyC creep and shrinkage and many more material data sets. 2. Renewed start of irradiation and accident testing of modem coated particle fuel. 3. Analysis of existing and newly created data with a view to demonstrate satisfactory performance at burnups beyond 10% FIMA and complete fission product retention even in accidents that go beyond $1600^{\circ}C$ for a short period of time. This work should proceed at both national and international level.

Anti-Inflammatory Effect of Ethanolic Extract from Polyopes affinis through Suppression of NF-κB and MAPK Activation in LPS-Stimulated RAW 264.7 Cells (LPS로 자극된 대식세포에서의 NF-κB와 MAPK 활성 조절을 통한 참까막살(Polyopes affinis) 에탄올 추출물의 항염증 효과)

  • Kim, Min-Ji;Kim, Koth-Bong-Woo-Ri;Park, Sun-Hee;Park, So-Young;Choi, Hyeun-Deok;Choi, Jung-Su;Jang, Mi-Ran;Im, Moo-Hyeog;Ahn, Dong-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.5
    • /
    • pp.537-544
    • /
    • 2017
  • In this study, the anti-inflammatory effect of Polyopes affinis ethanol extract (PAEE) was investigated using LPS-stimulated RAW 264.7 cells and a croton oil-induced ICR mice model. Treatment with PAEE significantly reduced production of nitric oxide (NO) and pro-inflammatory cytokines [interleukin (IL)-6, tumor necrosis factor $(TNF)-{\alpha}$, and $IL-1{\beta}$] in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. PAEE treatment also reduced expression of inducible NO synthase, cyclooxygenase-2, nuclear $factor-{\kappa}B$, and mitogen-activated protein kinases in LPS-stimulated RAW 264.7 cells. In the croton oil-induced ear edema test, application of PAEE (10~250 mg/kg body weight) reduced ear edema in a dose-dependent manner, and PAEE treatment at 50 mg/kg body weight showed similar inhibitory effects compared with prednisolone (10 mg/kg body weight). Histological analysis revealed reduced dermal thickness and lower number of infiltrated mast cells. These results suggest that PAEE might be used as a promising anti-inflammatory agent for inhibition of LPS-induced inflammation and ear edema formation.

Pseudotachylyte Developed in Granitic Gneiss around the Bulil Waterfall in the Jirisan, SE Korea: Its Occurrence and Characteristics (지리산 불일폭포 일원의 화강암질편마암에 발달한 슈도타킬라이트: 산상과 특성)

  • Kang, Hee-Cheol;Kim, Chang-Min;Han, Raehee;Ryoo, Chung-Ryul;Son, Moon;Lee, Sang-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.157-169
    • /
    • 2019
  • Pseudotachylytes, produced by frictional heating during seismic slip, provide information that is critical to understanding the physics of earthquakes. We report the results of occurrence, structural characteristics, scanning electron microscopic observation and geochemical analysis of pseudotachylytes, which is presumed to have formed after the Late Cretaceous in outcrops of the Paleoproterozoic granitic gneiss on the Bulil waterfall of the Jirisan area, Yeongnam massif, Korea. Fault rocks, which are the products of brittle deformation under the same shear stress regime in the study area, are classified as pseudotachylyte and foliated cataclasite. The occurrences of pseudotachylyte identified on the basis of thickness and morphology are fault vein-type and injection vein-type pseudotachylyte. A number of fault vein-type pseudotachylytes occur as thin (as thick as 2 cm) layers generated on the fault plane, and are cutting general foliation and sheared foliation developed in granitic gneiss. Smaller injection vein-type pseudotachylytes are found along the fault vein-type pseudotachylytes, and appear in a variety of shapes based on field occurrence and vein geometry. At a first glance fault vein-type seudotachylyte looks like a mafic vein, but it has a chemical composition almost identical to the wall rock of granitic gneiss. Also, it has many subrounded clasts which consist predominantly of quartz, feldspar, biotite and secondary minerals including clay minerals, calcite and glassy materials. Embayed clasts, phenocryst with reaction rim, oxide droplets, amygdules, and flow structures are also observed. All of these evidences indicate the pseudotachylyte formed due to frictional melting of the wall rock minerals during fault slip related to strong seismic faulting events in the shallow depth of low temperature-low pressure. Further studies will be conducted to determine the age and mechanical aspect of the pseudotachylyte formation.

Resarch on Manufacturing Technology of Red-Burnished Pottery Excavated from Samdeok-ri, Goseong, Korea (고성 삼덕리유적 출토 적색마연토기의 제작 특성 연구)

  • Han, Leehyeon;Kim, Sukyoung;Jin, Hongju;Jang, Sungyoon
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.4
    • /
    • pp.170-187
    • /
    • 2020
  • Dolmens bearing the burial layout and stone coffin tombs of the late Bronze Age were excavated from Samdeok-ri, Goseong, Gyeonsangnsamdo, and grave items such as red-burnished pottery, arrowheads, and stone swords were also discovered. In the case of the red-burnished pottery that was found, it retains a pigment layer with a thickness of about 50 to 160㎛, but with most of the other items, exfoliation and peeling-off of pigment layers can be observed on the surface. The raw materials of the red-burnished pottery contained moderately sorted minerals such as quartz, feldspar, and hornblende, and partly opaque iron oxide minerals were also identified. In particular, the raw materials of the red-burnished pottery from stone coffin tomb #6 were different from those of the other pottery, containing large amounts of hornblende and feldspar. The pottery's red pigment was identified as hematite and showed similar mineral content of raw materials such as fine grained quartz, feldspar, and hornblende. The firing temperature is estimated to have been approximately 900℃, based on their mineral phase. The possibility exists that the raw materials had been collected from the Samdeok-ri area, because diorite and granite diorite with dominant feldspar and hornblende have been identified within 3km of that area. During the pottery manufacturing process, it is estimated that the pigment was painted on the entire surface of the red-burnished pottery after it had been molded and then finished using the abrasion technique. In other words, the red-burnished pottery was made by the process of vessel forming - semi drying - coloring - polishing. The surface and cross-section of the pottery appears differently depending on the concentration of the pigment and the coloring method used after vessels were formed. Most of the excavated pottery features a distinct boundary between pigment and body fabric. However, in the case of pottery in which fine-grained pigments penetrate the body fabric so that layers cannot be distinguished, there is the possibility that the fine-grained pigment layer was applied at a low concentration or immediately after vessel forming. Many cracks can be seen on the surface pigments in thickly painted pottery items, and in many cases, only a small portion of the pigment layers remain due to surface exfoliation and abrasion in the burial environment. It is reported that pottery items may be more easily damaged by abrasion if coated with pigment and polished, so it is believed that the red-burnished pottery of the Samdeok-ri site suffered from weathering in the burial environment. This damage was more extensive in the potsherds that were scattered outside the tomb.