Browse > Article
http://dx.doi.org/10.7464/ksct.2014.20.3.306

Preparationand Characterization of Rutile-anatase Hybrid TiO2 Thin Film by Hydrothermal Synthesis  

Kwon, Soon Jin (Graduate School of Green Energy Technology, Chungnam National University)
Song, Hoon Sub (Department of Chemical Engineering, University of Waterloo)
Im, Hyo Been (Graduate School of Green Energy Technology, Chungnam National University)
Nam, Jung Eun (Advanced Convergence Research Center, Daegu Gyeongbuk Institute of Science & Technology)
Kang, Jin Kyu (Advanced Convergence Research Center, Daegu Gyeongbuk Institute of Science & Technology)
Hwang, Taek Sung (Department of Chemical Engineering, Chungnam National University)
Yi, Kwang Bok (Department of Chemical Engineering Education, Chungnam National University)
Publication Information
Clean Technology / v.20, no.3, 2014 , pp. 306-313 More about this Journal
Abstract
Nanoporous $TiO_2$ films are commonly used as working electrodes in dye-sensitized solar cells (DSSCs). So far, there have been attempts to synthesize films with various $TiO_2$ nanostructures to increase the power-conversion efficiency. In this work, vertically aligned rutile $TiO_2$ nanorods were grown on fluorinated tin oxide (FTO) glass by hydrothermal synthesis, followed by deposition of an anatase $TiO_2$ film. This new method of anatase $TiO_2$ growth avoided the use of a seed layer that is usually required in hydrothermal synthesis of $TiO_2$ electrodes. The dense anatase $TiO_2$ layer was designed to behave as the electron-generating layer, while the less dense rutile nanorods acted as electron-transfer pathwaysto the FTO glass. In order to facilitate the electron transfer, the rutile phase nanorods were treated with a $TiCl_4$ solution so that the nanorods were coated with the anatase $TiO_2$ film after heat treatment. Compared to the electrode consisting of only rutile $TiO_2$, the power-conversion efficiency of the rutile-anatase hybrid $TiO_2$ electrode was found to be much higher. The total thickness of the rutile-anatase hybrid $TiO_2$ structures were around $4.5-5.0{\mu}m$, and the highest power efficiency of the cell assembled with the structured $TiO_2$ electrode was around 3.94%.
Keywords
$TiO_2$ film; Dye-sensitized solar cells (DSSCs); Rutile-anatase $TiO_2$; Hydrothermal synthesis; $TiCl_4$ treatment;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Wang, H., Bai, Y., Wu, Q., Zhou, W., Zhang, H., Li, J., and Guo, L., "Rutile $TiO_2$ Nano-branched arrays on FTO for Dye-sensitized Solar Cells," Phys. Chem. Chem. Phys., 13, 7008-7013 (2011).   DOI   ScienceOn
2 Feng, X., Shankar, K., Paulose, M., and Grimes, C. A., "Tantalum-Doped Titanium Dioxide Nanowire arrays for Dye-Sensitized Solar Cells with High Open-Circuit Voltage," Angew. Chem. Int. Ed. Engl., 48, 8095-8098 (2009).   DOI   ScienceOn
3 Wu, W. Q., Lei, B. X., Rao, H. S., Xu, Y. F., Wang, Y. F., Su, C. Y., and Kuang, D. B., "Hydrothermal Fabrication of Hierarchically Anatase $TiO_2$ Nanowire Arrays on FTO Glass for Dye-sensitized Solar Cells," Sci Rep., 3, 1352 (2013).   DOI
4 Liao, J. Y., Lei, B. X., Wang, Y. F., Liu, J. M., Su, C. Y., and Kuang, D. B., "Hydrothermal Fabrication of Quasi-One-Dimensional Single-Crystalline Anatase $TiO_2$ Nanostructures on FTO Glass and Their Applications in Dye-Sensitized Solar Cells," Chem. Eur. J., 17, 1352-1357 (2011).   DOI   ScienceOn
5 Charoensirithavorn, P., Ogomi, Y., Sagawa, T., Hayase, S., and Yoshikawa, S., "Improvement of Dye-Sensitized Solar Cell Through $TiCl_4$-Treated $TiO_2$ Nanotube arrays," J. Electrochem. Soc., 157, B354-B356 (2010).   DOI   ScienceOn
6 Teatum, E. T., Gschneidner, K. A., and Waber, J. T., "Compilation of Calculated Date Useful in Predicting Metallurgical Behavior of the Elements in Binary alloy System," Nat. Technol. Inf. Ser., 206, (1968).
7 Ungar, T., "Microstructural Parameters from X-ray Diffraction Peak Broadening," Scr. Mater., 51, 777-781 (2004).   DOI   ScienceOn
8 Wang, X., Liu, Y., Zhou, X., Li, B., Wang, H., Zhao, W., Huang, H., Liang, C., Yu, X., Liua, Z., and Wang, H. S., "Synthesis of Long $TiO_2$ Nanowire Arrays with High Surface Areas via Synergistic Assembly Route for Highly Efficient Dye-sensitized Solar Cells," J. Mater. Chem., 22, 17531-17538 (2012).   DOI   ScienceOn
9 Yu, H., Zhang, S., Zhao, H., Xue, B., Liu, P., and Will, G., "High-Performance $TiO_2$ Photoanode with an Efficient Electron Transport Network for Dye-Sensitized Solar Cells," J. Phys. Chem. C, 113, 16277-16282 (2009).   DOI   ScienceOn
10 Palomares, E., Clifford, J. N., Haque, S. A., Lutz, T., and Durrant, J. R., "Slow Charge Recombination in Dye-sensitised Solar Cells (DSSC) Using $Al_2O_3$ Coated Nanoporous $TiO_2$ Films," Chem. Comm., 1464-1465 (2002).
11 Jennings, J. R., Ghicov, A., Peter, L. M., Schmuki, P., and Walker, A. B., "Dye-Sensitized Solar Cells Based on Oriented $TiO_2$ Nanotube Arrays: Transport, Trapping, and Transfer of Electrons," J. Am. Chem. Soc., 130, 13364-13372 (2008).   DOI   ScienceOn
12 Liu, Z., Subramania, V. R., and Misra, M., "Vertically Oriented $TiO_2$ Nanotube Arrays Grown on Ti Meshes for Flexible Dye-Sensitized Solar Cells," J. Phys. Chem. C, 113, 14028-14033 (2009).   DOI   ScienceOn
13 Feng, X., Shankar, K., Paulose, M., and Grimes, C. A., "Tantalum-Doped Titanium Dioxide Nanowire Arrays for Dye-Sensitized Solar Cells with High Open-Circuit Voltage," Angew. Chem., 121, 8239-8242 (2009).   DOI   ScienceOn
14 Albu, S. P., Kim, D., and Schmuki, P., "Growth of Aligned $TiO_2$ Bamboo-Type Nanotubes and Highly Ordered Nanolace," Angew Chem., 120, 1942-1945 (2008).   DOI   ScienceOn
15 Huang, Q., Zhou, G., Fang, L., Hua, L., and Wang, Z. S., "$TiO_2$ Nanorod Arrays Grown from a Mixed acid Medium for Efficient Dye-sensitized Solar Cells," Energy Environ. Sci., 4, 2145-2151 (2011).   DOI   ScienceOn
16 Lei, B. X., Liao, J. Y., Zhang, R., Wang, J., Su, C. Y., and Kuang, D. B., "Ordered Crystalline $TiO_2$ Nanotube Arrays on Transparent FTO Glass for Efficient Dye-Sensitized Solar Cells," J. Phys. Chem. C, 114, 15228-15233 (2010).   DOI   ScienceOn
17 Pommer, E. E., Liu, B., and Aydil, E. S., "Electron Transport and Recombination in Dye-sensitized Solar Cells Made from Single-crystal Rutile $TiO_2$ Nanowires," Phys. Chem. Chem. Phys., 11, 9648-9652 (2009).   DOI   ScienceOn
18 Feng, X., Zhu, K., Frank, A. J., Grimes, C. A., and Mallouk, T. E., "Rapid Charge Transport in Dye-Sensitized Solar Cells Made from Vertically Aligned Single-Crystal Rutile $TiO_2$ Nanowires," Angew. Chem., 124, 2781-2784 (2012).   DOI   ScienceOn
19 Lv, M., Zheng, D., Ye, M., Sun, L., Xiao, J., Guo, W., and Lin, C., "Densely Aligned Rutile $TiO_2$ Nanorod Arrays with High Surface Area for Efficient Dye-sensitized Solar Cells," Nanoscale, 4, 5872-5879 (2012).   DOI   ScienceOn
20 Howard, C. J., Sabine, Z. M., and Dickson, F., "Structural and Thermal Parameters for Rutile and Anatase," Acta Cryst. B, 47, 462-468 (1991).   DOI
21 Sedach, P. A., Gordon, T. J., Sayed, S. Y., Furstenhaupt, T., Sui, R., Baumgartner, T., and Berlinguette, C. P., "Solution Growth of Anatase $TiO_2$ Nanowires from Transparent Conducting Glass Substrates," J. Mater. Chem., 20, 5063-5069 (2010).   DOI   ScienceOn
22 Barbe, C. J., arendse, F., Comte, P., Jirousek, M., Lenzmann, F., Shklover, V., and Gratzel, M., "Nanocrystalline Titanium Oxide Electrodes for Photovoltaic applications," J. Am. Ceram. Soc., 80, 3157-3171 (1997).
23 Kuang, D., Brillet, J., Chen, P., Takata, M., Uchida, S., Miura, H., Sumioka, K., Zakeeruddin, S. M., and Gratzel, M., "Application of Highly Ordered $TiO_2$ Nanotube Arrays in Flexible Dye-Sensitized Solar Cells," ACS Nano., 2, 1113-1116 (2008).   DOI   ScienceOn
24 Tan, B., and Wu, Y., "Dye-Sensitized Solar Cells Based on Anatase $TiO_2$ Nanoparticle/Nanowire Composites," J. Phys. Chem. B, 110, 15932-15938 (2006).   DOI   ScienceOn
25 Chen, D., Huang, F., Cheng, Y. B., and Caruso, R. A., "Mesoporous anatase $TiO_2$ Beads with High Surface areas and Controllable Pore Sizes: a Superior Candidate for High-Performance Dye-Sensitized Solar Cells," Adv. Mater., 21, 2206-2210 (2009).   DOI   ScienceOn
26 Chou, T. P., Zhang, Q. F., Russo, B., Fryxell, G. E., and Cao, G. Z., "Titania Particle Size Effect on the Overall Performance of Dye-Sensitized Solar Cells," J. Phys. Chem. C, 111, 6296-6302 (2007).   DOI   ScienceOn
27 Cahen, D., Hodes, G., Gratzel, M., Guillemoles, J. F., and Riess, I., "Nature of Photovoltaic action in Dye-Sensitized Solar Cells," J. Phys. Chem. B, 104, 2053-2059 (2000).   DOI   ScienceOn
28 Miao, L., Jin, P., Kaneko, K., Terai, A., Nabatova-Gabain, N., and Tanemura, S., "Preparation and Characterization of Polycrystalline anatase and Rutile $TiO_2$ Thin fims by rf Magnetron Sputtering," App. Surf. Sci., 212, 255-263 (2003).
29 Ovenstone, J., and Yanagisawa, K., "Effect of Hydrothermal Treatment of amorphous Titania on the Phase Change from anatase to Rutile during Calcination," Chem. Mater., 11, 2770-2774 (1999).   DOI   ScienceOn
30 Zhang, Q., Gao, L., and Guo, J., "Effects of Calcination on the Photocatalytic Properties of Nanosized $TiO_2$ Powders Prepared by $TiCl_4$ Hydrolysis," Appl. Catal. B-Environ., 26, 207-215 (2000).   DOI   ScienceOn
31 Benkol, G., Kallioinen, J., Myllyperkio1, P., Trif, F., Tommola, J. E. I. K., Yartsev, A. P., and Sundstrom, V., "Interligand Electron Transfer Determines Triplet Excited State Electron Injection in $RuN_3$-Sensitized $TiO_2$ Films," J. Phys. Chem. B, 108, 2862-2867 (2004).   DOI   ScienceOn
32 Lee, H. J., Park, N. K., Lee, T. J., Han, G. B., and Kang, M. S., "Effect of Particle Size and Structure of $TiO_2$ Semiconductor on Photoelectronic Efficiency of Dye-sensitized Solar Cell," Clean Technol., 19, 22-29 (2013).   DOI   ScienceOn
33 Regan, B. O., and Gratzel, M., "a Low-cost, High-efficiency Solar Cell Based on Dye-sensitized Colloidal $TiO_2$ Films," Nature, 353, 737-740 (1991).   DOI
34 Gratzel, M., "Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells," Inorg. Chem., 44, 6841-6851 (2005).   DOI   ScienceOn
35 Gratzel, M., "Recent advances in Sensitized Mesoscopic Solar Cells," Acc. Chem. Res., 42, 1788-1798 (2009).   DOI   ScienceOn
36 Frank, S. N., and Bard, A. J., "Semiconductor Electrodes. II. Electrochemistry at n-Type $TiO_2$ Electrodes in acetonitrile Solutions," J. Am. Chem. Soc., 97, 7427-7433 (1975).   DOI
37 Reintjes, J., and Schultz, M. B., "Photoelastic Constants of Selected Ultrasonic Delay-Line Crystals," J. Appl. Phys., 39, 5254-5258 (1968).   DOI
38 Santz, P. A., and Kamat, P. V., "Interparticle Electron Transfer between Size-quantized CdS and $TiO_2$ Semiconductor Nanoclusters," Phys. Chem. Chem. Phys., 4, 198-203 (2002).   DOI   ScienceOn
39 Giraudeau, A., Fan, F. F., and Bard, A. J., "Semiconductor Electrodes. 30. Spectral Sensitization of the Semiconductors n-$TiO_2$and n-$WO_3$ with Metal Phthalocyanines," J. Am. Chem. Soc., 102, 5142-5148 (1980).   DOI
40 Mo, S. D., and Ching, W. Y., "Electronic and Optical Properties of Three Phases of Titanium Dioxide: Rutile, anatase, and Brookite," Phys. Rev., B51, 13023-13032 (1995).
41 Liu, B., and Aydil, E. S., "Growth of Oriented Single-Crystalline Rutile $TiO_2$ Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells," J. Am. Chem. Soc., 131, 3985-3990 (2009).   DOI   ScienceOn
42 Granovskii, M., Dincer, I., and Rosen, M. A., "Greenhouse Gas Emissions Reduction by Use of Wind and Solar Energies for Hydrogen and Electricity Production: Economic Factors," Int. J. Hydro. Energ., 32, 927-931 (2007).
43 Zhang, F., Chan, S. W., Spanier, J. E., Apak, E., Jin, Q., Robinson, R. D., and Herman, I. P., "Cerium Oxide Nanoparticles: Size-selective Formation and Structure Analysis," Appl. Phys. Lett., 80, 127-129 (2002).   DOI   ScienceOn
44 Li, W., Ni, C., Lin, H., Huang, C. P., and Shah, S. I., "Size Dependence of Thermal Stability of $TiO_2$ Nanoparticles," J. Appl. Phys., 96, 6663-6668 (2004).   DOI   ScienceOn
45 Cho, T. Y., Han, C. W., Jun, Y. S., and Yoon, S. G., "Formation of Artificial Pores in Nano-$TiO_2$ Photo-electrode Films Using Acetylene-black for High-efficiency, Dye-sensitized Solar Cells," Sci. Rep., 3, 1496 (2013).   DOI
46 Kim, S. Y., and van Duin, A. C. T., "Simulation of Titanium Metal/Titanium Dioxide Etching with Chlorine and Hydrogen Chloride Gases Using the ReaxFF Reactive Force Field," J. Phys. Chem. A, 117, 5655-5663 (2013).   DOI   ScienceOn
47 Guo, W., Xu, C., Wang, X., Wang, S., Pan, C., Lin, C., and Wang, Z. L., "Rectangular Bunched Rutile $TiO_2$ Nanorod Arrays Grown on Carbon Fiber for Dye-Sensitized Solar Cells," J. am. Chem. Soc., 134, 4437-4441 (2012).   DOI   ScienceOn