DOI QR코드

DOI QR Code

Pseudotachylyte Developed in Granitic Gneiss around the Bulil Waterfall in the Jirisan, SE Korea: Its Occurrence and Characteristics

지리산 불일폭포 일원의 화강암질편마암에 발달한 슈도타킬라이트: 산상과 특성

  • Kang, Hee-Cheol (Department of Geological Sciences, Pusan National University) ;
  • Kim, Chang-Min (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Han, Raehee (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Ryoo, Chung-Ryul (Geology Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Son, Moon (Department of Geological Sciences, Pusan National University) ;
  • Lee, Sang-Won (Department of Earth Science Education, Pusan National University)
  • 강희철 (부산대학교 지질환경과학과) ;
  • 김창민 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 한래희 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 류충렬 (한국지질자원연구원 국토지질연구본부) ;
  • 손문 (부산대학교 지질환경과학과) ;
  • 이상원 (부산대학교 지구과학교육과)
  • Received : 2019.09.10
  • Accepted : 2019.09.23
  • Published : 2019.09.30

Abstract

Pseudotachylytes, produced by frictional heating during seismic slip, provide information that is critical to understanding the physics of earthquakes. We report the results of occurrence, structural characteristics, scanning electron microscopic observation and geochemical analysis of pseudotachylytes, which is presumed to have formed after the Late Cretaceous in outcrops of the Paleoproterozoic granitic gneiss on the Bulil waterfall of the Jirisan area, Yeongnam massif, Korea. Fault rocks, which are the products of brittle deformation under the same shear stress regime in the study area, are classified as pseudotachylyte and foliated cataclasite. The occurrences of pseudotachylyte identified on the basis of thickness and morphology are fault vein-type and injection vein-type pseudotachylyte. A number of fault vein-type pseudotachylytes occur as thin (as thick as 2 cm) layers generated on the fault plane, and are cutting general foliation and sheared foliation developed in granitic gneiss. Smaller injection vein-type pseudotachylytes are found along the fault vein-type pseudotachylytes, and appear in a variety of shapes based on field occurrence and vein geometry. At a first glance fault vein-type seudotachylyte looks like a mafic vein, but it has a chemical composition almost identical to the wall rock of granitic gneiss. Also, it has many subrounded clasts which consist predominantly of quartz, feldspar, biotite and secondary minerals including clay minerals, calcite and glassy materials. Embayed clasts, phenocryst with reaction rim, oxide droplets, amygdules, and flow structures are also observed. All of these evidences indicate the pseudotachylyte formed due to frictional melting of the wall rock minerals during fault slip related to strong seismic faulting events in the shallow depth of low temperature-low pressure. Further studies will be conducted to determine the age and mechanical aspect of the pseudotachylyte formation.

경상남도 하동군 화개면 지리산 불일폭포에 분포하는 선캄브리아시대 고원생대의 화강암질편마암 노두에서 관찰되는 중생대 백악기 이후에 형성된 것으로 추정되는 슈도타킬라이트를 대상으로 야외 산상과 구조지질학적 특성, 암석기재, 전자현미경 관찰, 지화학적 분석 등을 수행하였다. 연구지역 노두에서 동일한 전단영역에 발달한 취성변형작용의 산물인 단층암은 슈도타킬라이트와 엽리상 파쇄암으로 분류된다. 이들 중에서 단층작용에 수반된 암회색 슈도타킬라이트들의 산출형태는 수 mm~수 cm 단위의 두께로 단층면을 따라 발달한 '단층세맥형'과 단층세맥형의 슈도타킬라이트로부터 그 용융물이 주변암에 주입되어 형성된 '주입세맥형'으로 구분된다. 이들 슈도타킬라이트의 암석 슬랩과 박편에서는 유리질 내지 탈유리화된 기질부에 석영, 알칼리장석, 사장석, 흑운모 등 잔류광물들의 쇄설성 조직, 만입경계가 발달한 반정, 반응연, 산화물의 물방울 모양구조, 행인상구조, 빠른 냉각으로 형성된 유리, 유동구조 등이 관찰된다. 또한, 슈도타킬라이트의 주성분 및 광물의 조성은 일반적인 염기성 암맥과 달리 모암인 화강암질편마암의 조성과 거의 동일하게 나타난다. 이상의 관찰과 분석은 아주 천처에서 고속 미끌림의 지진성 단층운동으로 발생한 마찰열로부터 모암의 마모와 선별적인 용융의 결과로 생성된 슈도타킬라이트임을 지시한다. 본 연구에서 완전히 규명하지 못한 슈도타킬라이트의 명확한 생성연대, 생성 온도와 깊이, 운동학적 특성과 관련한 단층의 변위와 길이, 단층 미끌림 속도 등에 관해서는 후속연구로부터 밝힐 예정이다.

Keywords

References

  1. Ahn, S.-H., Kim, J.-S., Cho, H., Song, C.-W., Son, M., Ryoo, C.-R. and Kim, I.-S., 2010, Classification and Relative Chronology of Dyke Swarms in the Proterozoic Sancheong Anorthositic Rocks, South Korea. Journal of the Geological Society of Korea, 46, 13-30. (in Korean with English abstract)
  2. Choo, C.-O. and Jeong, G.-C., 2017, Engineering Geological Implications of Fault Zone in Deep Drill Cores: Microtextural Characterization of Pseudotachylite and Seismic Activity. The Journal of Engineering Geology, 27, 489-500. (in Korean with English abstract) https://doi.org/10.9720/KSEG.2017.4.489
  3. Cowan, D.S., 1999, Do faults preserve a record of seismic slip? A field geologist's opinion. Journal of Structural Geology, 21, 995-1,001. https://doi.org/10.1016/S0191-8141(99)00046-2
  4. Han, R., 2017, Pseudotachylytes and seismic fault slip. Journal of the Geological Society of Korea, 53, 159-171. (in Korean with English abstract) https://doi.org/10.14770/jgsk.2017.53.1.159
  5. Han, R., Kim, J.-S., Kim, C.-M., Hirose, T., Jeong, J. O. and Jeong, G. Y., 2019, Dynamic weakening of ring faults and catastrophic caldera collapses. Geology, 47, 107-110, doi:10.1130/G45687.1.
  6. Jeong, J.-G., Chung, G. S. and Cho, M., 2011, The microworld of rocks: From the observation of the polarization microscope to the name of the rock. Sigmapress, Seoul, 274p. (in Korean)
  7. Kang, H.-C., Han, R., Kim, C.-M., Cheon, Y., Cho, H., Yi, K., Son, M. and Kim, J.S., 2017, The Bonggil Pseudotachylyte, SE Korea: Its occurrence and characteristics. Journal of the Geological Society of Korea, 53, 173-191. (in Korean with English abstract) https://doi.org/10.14770/jgsk.2017.53.1.173
  8. Kang, J.-H. and Lee, D.-S., 2016, Formation Process and Its Mechanism of the Sancheong Anorthosite Complex, Korea. Economic and Environmental Geology, 48, 431-449. (in Korean with English abstract) https://doi.org/10.9719/EEG.2015.48.6.431
  9. Kim, J.-S., Cho, H., Ahn, S.-H., Song, C.-W., Son, M. and Kim, I.-S., 2010, SHRIMP U-Pb age of the Sancheong Anorthositic Rocks and Dyke Swarms, Yeongnam Massif, Korea (Abstract). Joint conference of the Geological Science and Technology of Korea, 125-126.
  10. Kim, S.W., Kwon, S., Yi, K. and Santosh, M., 2014, Arc magmatism in the Yeongnam Massif, Korean Peninsula: imprints of Columbia and Rodinia supercontinents. Gondwana Research. 26, 1,009-1,027. https://doi.org/10.1016/j.gr.2013.08.020
  11. Kim, C.-M., Han, R., Kim, J.S., Sohn, Y.G., Jeong, J.O., Jeong, G.Y., Yi, K. and Kim, J.C., 2019, Fault zone processes during caldera collapse: Jangsan Caldera, Korea. Journal of Structural Geology, 124, 197-210. https://doi.org/10.1016/j.jsg.2019.05.002
  12. Kirkpatrick, J.D. and Rowe, C.D., 2013, Disappearing ink: How pseudotachylytes are lost from the rock record. Journal of Structural Geology, 52, 183-198. https://doi.org/10.1016/j.jsg.2013.03.003
  13. Kirkpatrick, J.D., Dobson, K.J., Mark, D.F., Shipton, Z.K., Brodsky, E.E. and Stuart, F.M., 2012, The depth of pseudotachylyte formation from detailed thermochronology and constraints on coseismic stress drop variability. Journal of Geophysical Research, 117.
  14. Lee, S.R. and Cho, K., 2012, Precambrian crustal evolution of the Korean Peninsula. Journal of Petrological Society of Korea, 21, 89-112. (in Korean with English abstract) https://doi.org/10.7854/JPSK.2012.21.2.089
  15. Lee, D.-S. and Kang, J.-H., 2012, Geological Structures of the Hadong Northern Anorthosite Complex and its surrounding Area in the Jirisan Province, Yeongnam Massif, Korea. Journal of the Petrological Society of Korea, 21, 287-307. (in Korean with English abstract) https://doi.org/10.7854/JPSK.2012.21.3.287
  16. Lee, D.-S. and Kang, J.-H., 2013a, Deformational Phased Structural Characteristics of the Hadong Southern Anorthosite Complex and its Surrounding Area in the Jirisan Province, Yeongnam Massif, Korea. Journal of the Petrological Society of Korea, 22, 179-195. (in Korean with English abstract) https://doi.org/10.7854/JPSK.2013.22.2.179
  17. Lee, D.-S. and Kang, J.-H., 2013b, Geological Structure of the Jirisan Metamorphic Complex of the Yeongnam Massif in the Hwagae Area, Korea. Journal of the Petrological Society of Korea, 22, 251-261. (in Korean with English abstract) https://doi.org/10.7854/JPSK.2013.22.4.251
  18. Lee, D.-S. and Kang, J.-H., 2016, Geometric and Kinematic Characteristics of Fracture System in the Sancheong Anorthosite Complex, Korea. Journal of the Petrological Society of Korea, 25, 389-400. (in Korean with English abstract) https://doi.org/10.7854/JPSK.2016.25.4.389
  19. Lee, Y., Cho, M., Cheong, W. and Yi, K., 2014, A massif-type (-1.86 Ga) anorthosite complex in the Yeongnam Massif, Korea: late-orogenic emplacement associated with the mantle delamination in the North China Craton. Terra Nova, 26, 408-416. https://doi.org/10.1111/ter.12115
  20. Lee, K., 1979, On crustal structure of the Korean Peninsula, Journal of the Geological Society of Korea, 15, 134-150.
  21. Lin, A., 1994a, Glassy pseudotachylyte veins from the Fuyun fault zone, northwest China. Journal of Structural Geology, 16, 71-83. https://doi.org/10.1016/0191-8141(94)90019-1
  22. Lin, A., 1994b, Microlite morphology and chemistry in pseudotachylite, from the Fuyun fault zone, China. The Journal of Geology, 102, 317-329. https://doi.org/10.1086/629674
  23. Lin, A., 2008, Fossil earthquakes: The Formation and Preservation of Pseudotachylytes. Lecture Notes in Earth Sciences, 111, Springer, Berlin, 349p.
  24. Lin, A., Maruyama, T., Stallard, A., Michibayashi, K., Camacho, A. and Kano, K., 2005, Propagation of seismic slip from brittle to ductile regimes: evidence from the pseudotachylyte of Woodroffe thrust, central Australia. Tectonophysics, 402, 21-35. https://doi.org/10.1016/j.tecto.2004.10.016
  25. Lin, A., Sun, Z. and Yang, Z., 2003, Multiple generations of pseudotachylyte in the brittle to ductile regimes, Qinling-Dabie Shan ultrahigh-pressure metamorphic complex, central China. The Island Arc, 12, 423-435. https://doi.org/10.1046/j.1440-1738.2003.00407.x
  26. Maddock, R.H., Grocott, J. and van Nes, M., 1987, Vesicles, amygdales and similar structures in fault-generated pseudotachylytes. Lithos, 20, 419-432. https://doi.org/10.1016/0024-4937(87)90019-3
  27. Magloughlin J.F., 1992, Microstructural and chemical changes associated with cataclasis and frictional melting at shallow crust levels: the cataclasite- pseudotachylyte connection. Tectonophysics, 204, 243-260. https://doi.org/10.1016/0040-1951(92)90310-3
  28. Magloughlin, J.F. and Spray, J.G., 1992, Frictional melting process and products in geological materials: introduction and discussion. Tectonophysics, 204, 197-206. https://doi.org/10.1016/0040-1951(92)90307-R
  29. Magloughlin, J.F., 2005, Immiscible sulfide droplets in pseudotachylyte: Evidence for high temperature (>$1200^{\circ}C$) melts. Tectonophysics, 402, 81-91. https://doi.org/10.1016/j.tecto.2004.11.011
  30. McNulty B.A., 1995, Pseudotachylyte generated in semi-brittle and brittle regimes, Bench Canyon shear zone, central Sierra Nevada. Journal of Structural Geology, 11, 1,507-1,521. https://doi.org/10.1016/0191-8141(95)00052-F
  31. Park, K.-H., Song, Y.-S. and Seo, J., 2018, U-Pb Geochronology of the Triassic Foliated Granite Distributed in the Eastern Sancheong Area, SW Yeongnam Massif, Korea and its Implications. Journal of the Petrological Society of Korea, 27, 223-233. (in Korean with English abstract) https://doi.org/10.7854/JPSK.2018.27.4.223
  32. Passchier, C.W., 1982, Pseudotachylyte and the development of ultramylonite bands in the Saint-Barthelemy Massif, French Pyrenees. Journal of Structural Geology, 4, 69-79. https://doi.org/10.1016/0191-8141(82)90008-6
  33. Ryoo, C.-R., Kang, H.-C. and Lee, S.-W., 2019, Ductile Shear Deformation around Jirisan Area, Korea. Journal of the Petrological Society of Korea, 28, 53-69. (in Korean with English abstract) https://doi.org/10.7854/JPSK.2019.28.2.53
  34. Sibson, R.H., 1975, Generation of pseudotachylyte by ancient seismic faulting, Geophysical Journal of the Royal Astronomical Society, 43,775-43,794.
  35. Son, C.-M., Lee, S.-M., Won, J.-K., Chang, K.-H. and Kim, Y.-C., 1964, Explanatory text of the geological map (1:50,000) of Hwagae sheet. Geological Survey of Korea, 25p.
  36. Spray, J.G., 1987, Artificial generation of pseudotachylyte using friction welding apparatus: simulation of melting on a fault plane. Journal of Structural Geology, 9, 49-60. https://doi.org/10.1016/0191-8141(87)90043-5
  37. Toyoshima, T., 1990, Pseudotachylite from the main zone of the Hidaka metamorphic belt, Hokkaido, northern Japan. Journal of Metamorphic Geology, 8, 507-523. https://doi.org/10.1111/j.1525-1314.1990.tb00483.x
  38. Turek, A. and Kim, C.-B., 1996, U-Pb zircon ages for Precambrian rocks in southwestern Ryeongnam and southwestern Gyeonggi massifs, Korea, Geochemical Journal, 30, 231-249. https://doi.org/10.2343/geochemj.30.231