• Title/Summary/Keyword: Oxide Semiconductor

Search Result 1,419, Processing Time 0.03 seconds

A Study on the Characteristics of Semiconductor Oxides with V2O5 (V2O5가 첨가된 반도체 산화물의 특성개선연구)

  • Lee, Don-Kyu
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.965-969
    • /
    • 2018
  • In the dye-sensitized solar cell, the semiconductor oxide plays an important role in the generation and transport of electrons, and thus extensive research on this has been continuously carried out. In this study, the characteristics of dye-sensitized solar cell are studied by fabricating semiconductor oxide doped with $V_2O_5$. The $TiO_2$ paste with $V_2O_5$ is prepared by the screen printing method of the sol - gel process and the surface and electrical properties are measured. The addition of $V_2O_5$ increased grain size and improved the open circuit voltage, short circuit current, charge factor and conversion efficiency of the dye sensitized solar cell.

Various Shape of Carbon Layer on Ga2O3 Thin Film by Controlling Methane Fraction in Radio Frequency Plasma Chemical Vapor Deposition (Ga2O3박막 상에서의 RF 플라즈마 화학기상증착법의 메테인 분율 조절에 의한 탄소층의 다양한 형상 제어 연구)

  • Seo, Ji-Yeon;Shin, Yun-Ji;Jeong, Seong-Min;Kim, Tae-Gyu;Bae, Si-Young
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.2
    • /
    • pp.51-56
    • /
    • 2022
  • In this study, we controlled the shape of a carbon layer on gallium oxide templates. Gallium oxide layers were deposited on sapphire substrates using mist chemical vapor deposition. Subsequently, carbon layers were formed using radio frequency plasma chemical vapor deposition. Various shapes of carbon structures appeared according to the fraction of methane gas, used as a precursor. As methane gas concentration was adjusted from 1 to 100%, The shapes of carbon structures varied to diamonds, nanowalls, and spheres. The growth of carbon isotope structures on Ga2O3 templates will give rise to improving the electrical and thermal properties in the next-generation electronic applications.

Alternative Optimization Techniques for Shallow Trench Isolation and Replacement Gate Technology Chemical Mechanical Planarization

  • Stefanova, Y.;Cilek, F.;Endres, R.;Schwalke, U.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.1-4
    • /
    • 2007
  • This paper discusses two approaches for pre-polishing optimization of oxide chemical mechanical planarization (CMP) that can be used as alternatives to the commonly applied dummy structure insertion in shallow trench isolation (STI) and replacement gate (RG) technologies: reverse nitride masking (RNM) and oxide etchback (OEB). Wafers have been produced using each optimization technique and CMP tests have been performed. Dishing, erosion and global planarity have been investigated with the help of conductive atomic force microscopy (C-AFM). The results demonstrate the effectiveness of both techniques which yield excellent planarity without dummy structure related performance degradation due to capacitive coupling.

Temperature Dependence of SiInZnO Thin Film Transistor Fabricated by Solution Process

  • Lee, Sang Yeol;Kang, Taehyun;Han, Sang Min;Lee, Young Seon;Choi, Jun Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.46-48
    • /
    • 2015
  • Thin film transistor (TFT) with silicon indium zinc oxide (SIZO) was fabricated by solution process, and the effect of annealling temperature on the electrical performance has been explored. The performance of SIZO TFT exhibited saturation mobility of $1.37cm^2$/Vs, a threshold voltage of -7.2 V, and an on-off ratio of $1.1{\times}10^5$.

Effects of Ti and TiN Capping Layers on Cobalt-silicided MOS Device Characteristics in Embedded DRAM and Logic

  • Kim, Jong-Chae;Kim, Yeong-Cheol;Choy, Jun-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.782-786
    • /
    • 2001
  • Cobalt silicide has been employed to Embedded DRAM (Dynamic Random Access Memory) and Logic (EDL) as contact material to improve its speed. We have investigated the influences of Ti and TiN capping layers on cobalt-silicided Complementary Metal-Oxide-Semiconductor (CMOS) device characteristics. TiN capping layer is shown to be superior to Ti capping layer with respect to high thermal stability and the current driving capability of pMOSFETs. Secondary Ion Mass Spectrometry (SIMS) showed that the Ti capping layer could not prevent the out-diffusion of boron dopants. The resulting operating current of MOS devices with Ti capping layer was degraded by more than 10%, compared with those with TiN.

  • PDF

Characteristics of Oxide-Nitride-Oxide Superthin Films for Nonvolatile Semiconductor Memory Devices (비휘발성 반도체 기억소자를 위한 Oxide-Nitride-Oxide 초박막의 특성)

  • 김선주;국삼경;이상은;이상배;서광열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.13-17
    • /
    • 1996
  • Superthin ONO ( oxide -nitride - oxide ) structures were fabricated for the MONOS nonvolatile memory device with a 20$\AA$ tunneling oxide, 40$\AA$ nitride and 40$\AA$ blocking oxide. The compositions of each layer in a superthin ONO structure were investigated. Also, the characteristics of trap related to the memory quality were examined.

  • PDF

The Effect of Re-nitridation on Plasma-Enhanced Chemical-Vapor Deposited $SiO_2/Thermally-Nitrided\;SiO_2$ Stacks on N-type 4H SiC

  • Cheong, Kuan Yew;Bahng, Wook;Kim, Nam-Kyun;Na, Hoon-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.48-51
    • /
    • 2004
  • In this paper the importance of re-nitridation on a plasma-enhanced chemical-vapor deposited(PECVD) $SiO_2$ stacked on a thermally grown thin-nitrided $SiO_2$ on n-type 4H SiC have been investigated. Without the final re-nitridation process, the leakage current of metaloxidesemiconductor(MOS) was extremely large. It is believed that water and carbon, contamination from the low-thermal budget PECVD process, are the main factors that destroyed the high quality thin-buffer nitrided oxide. After re-nitridation annealing, the quality of the stacked gate oxide was improved. The reasons of this improvement are presented.

  • PDF

High-performance thin-film transistor with a novel metal oxide channel layer

  • Son, Dae-Ho;Kim, Dae-Hwan;Kim, Jung-Hye;Sung, Shi-Joon;Jung, Eun-Ae;Kang, Jin-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.222-222
    • /
    • 2010
  • Transparent semiconductor oxide thin films have been attracting considerable attention as potential channel layers in thin film transistors (TFTs) owing to their several advantageous electrical and optical characteristics such as high mobility, high stability, and transparency. TFTs with ZnO or similar metal oxide semiconductor thin films as the active layer have already been developed for use in active matrix organic light emitting diode (AMOLED). Of late, there have been several reports on TFTs fabricated with InZnO, AlZnSnO, InGaZnO, or other metal oxide semiconductor thin films as the active channel layer. These newly developed TFTs were expected to have better electrical characteristics than ZnO TFTs. In fact, results of these investigations have shown that TFTs with the new multi-component material have excellent electrical properties. In this work, we present TFTs with inverted coplanar geometry and with a novel HfInZnO active layer co-sputtered at room temperature. These TFTs are meant for use in low voltage, battery-operated mobile and flexible devices. Overall, the TFTs showed good performance: the low sub-threshold swing was low and the $I_{on/off}$ ratio was high.

  • PDF

Atomic Layer Deposition for Display Applications

  • Park, Jin-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.76.1-76.1
    • /
    • 2013
  • Atomic Layer Deposition (ALD) has remarkably developed in semiconductor and nano-structure applications since early 1990. Now, the advantages of ALD process are well-known as controlling atomic-level-thickness, manipulating atomic-level-composition control, and depositing impurity-free films uniformly. These unique properties may accelerate ALD related industries and applications in various functional thin film markets. On the other hand, one of big markets, Display industry, just starts to look at the potential to adopt ALD functional films in emerging display applications, such as transparent and flexible displays. Unlike conventional ALD process strategies (good quality films and stable precursors at high deposition processes), recently major display industries have suggested the following requirements: large area equipment, reasonable throughput, low temperature process, and cost-effective functional precursors. In this talk, it will be mentioned some demands of display industries for applying ALD processes and/or functional films, in terms of emerging display technologies. In fact, the AMOLED (active matrix organic light emitting diode) Television markets are just starting at early 2013. There are a few possibilities and needs to be developing for AMOLED, Flexible and transparent Display markets. Moreover, some basic results will be shown to specify ALD display applications, including transparent conduction oxide, oxide semiconductor, passivation and barrier films.

  • PDF

Abnormal Detection in 3D-NAND Dielectrics Deposition Equipment Using Photo Diagnostic Sensor

  • Kang, Dae Won;Baek, Jae Keun;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.74-84
    • /
    • 2022
  • As the semiconductor industry develops, the difficulty of newly required process technology becomes difficult, and the importance of production yield and product reliability increases. As an effort to minimize yield loss in the manufacturing process, interests in the process defect process for facility diagnosis and defect identification are continuously increasing. This research observed the plasma condition changes in the multi oxide/nitride layer deposition (MOLD) process, which is one of the 3D-NAND manufacturing processes through optical emission spectroscopy (OES) and monitored the result of whether the change in plasma characteristics generated in repeated deposition of oxide film and nitride film could directly affect the film. Based on these results, it was confirmed that if a change over a certain period occurs, a change in the plasma characteristics was detected. The change may affect the quality of oxide film, such as the film thickness as well as the interfacial surface roughness when the oxide and nitride thin film deposited by plasma enhenced chemical vapor deposition (PECVD) method.