• Title/Summary/Keyword: Output ripple voltage

Search Result 373, Processing Time 0.031 seconds

Torque Ripple Reduction Method in a Sensorless Drive for BLDC Motor (브러시리스 직류전동기용 센서리스 드라이브의 토크 맥동 저감 방법)

  • Lee, Kwang-Woon;Kim, Dae-Kyong;Kim, Tae-Duk
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1087-1089
    • /
    • 2003
  • This paper presents a method to reduce commutation torque ripple in a sensorless brushless DC motor drive without current sensors. To compensate the commutation torque ripple completely, the duration of commutation must be known. The proposed method measures the duration of commutation from terminal voltage waveforms, calculates a PWM duty ratio to suppress the commutation torque ripple from the output of speed controller, and applies the calculated PWM duty ratio only during the commutation. Experimental results show that vibrations are considerably reduced when the proposed method is applied to the sensorless brushless DC moter drive for air-conditioner compressor.

  • PDF

Power Decoupling Control of the Bidirectional Converter to Eliminate the Double Line Frequency Ripple (더블라인 주파수 제거를 위한 양방향 컨버터의 전력 디커플링 제어)

  • Amin, Saghir;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.62-64
    • /
    • 2018
  • In two-stage single-phase inverters, inherent double line frequency component is present at both input and output of the front-end converter. Generally large electrolytic capacitors are required to eliminate the ripple. It is well known that the low frequency ripple shortens the lifespan of the capacitor hence the system reliability. However, the ripple can hardly be eliminated without the hardware combined with an energy storage device or a certain control algorithm. In this paper, a novel power-decoupling control method is proposed to eliminate the double line frequency ripple at the front-end converter of the DC/AC power conversion system. The proposed control algorithm is composed of two loop, ripple rejection loop and average voltage control loop and no extra hardware is required. In addition, it does not require any information from the phase-locked-loop (PLL) of the inverter and hence it is independent of the inverter control. In order to prove the validity and feasibility of the proposed algorithm a 5kW Dual Active Bridge DC/DC converter and a single-phase inverter are implemented, and experimental results are presented.

  • PDF

Design of Hysteretic Buck Converter with A Low Output Ripple Voltage and Fixed Switching Frequency in CCM (작은 출력 전압 리플과 연속 전도모드에서 고정된 스위칭 주파수를 가지는 히스테리틱 벅 변환기 설계)

  • Jeong, Tae-Jin;Jo, Yong-Min;Lee, Tae-Heon;Yoon, Kwang Sub
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.50-56
    • /
    • 2015
  • An efficient fast response hysteretic buck converter suitable for mobile application is propoesed. The problems of large output ripple and difficulty in using of small power inductor that conventional hysteretic converter has are improved by adding ramp generator. and the changeable switching frequency with load current is fixed by adding a delay time control circuit composed of PLL structure resulting in decrease of EMI noise. The circuits are implemented by using BCDMOS 0.35um 2-polt 4-metal process. Measurement results show that the converter operates with a switching frequency of 1.85MHz when drives 80mA load current. As the converter drives over 170mA load current, the switching frequency is fixed on 2MHz. The converter has output ripple voltage of less 20mV and more than efficiency 85% with 50~500mA laod current condition.

Comparative Study of Minimum Ripple Switching Loss PWM Hybrid Sequences for Two-level VSI Drives

  • Vivek, G.;Biswas, Jayanta;Nair, Meenu D.;Barai, Mukti
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1729-1750
    • /
    • 2018
  • Voltage source inverters (VSIs) are widely used to drive induction motors in industry applications. The quality of output waveforms depends on the switching sequences used in pulse width modulation (PWM). In this work, all existing optimal space vector pulse width modulation (SVPWM) switching strategies are studied. The performance of existing SVPWM switching strategies is optimized to realize a tradeoff between quality of output waveforms and switching losses. This study generalizes the existing optimal switching sequences for total harmonic distortions (THDs) and switching losses for different modulation indexes and reference angles with a parameter called quality factor. This factor provides a common platform in which the THDs and switching losses of different SVPWM techniques can be compared. The optimal spatial distribution of each sequence is derived on the basis of the quality factor to minimize harmonic current distortions and switching losses in a sector; the result is the minimum ripple loss SVPWM (MRSLPWM). By employing the sequences from optimized switching maps, the proposed method can simultaneously reduce THDs and switching losses. Two hybrid SVPWM techniques are proposed to reduce line current distortions and switching losses in motor drives. The proposed hybrid SVPWM strategies are MRSLPWM 30 and MRSLPWM 90. With a low-cost PIC microcontroller (PIC18F452), the proposed hybrid SVPWM techniques and the quality of output waveforms are experimentally validated on a 2 kVA VSI based on a three-phase two-level insulated gate bipolar transistor.

Design of a Step-Down DC-DC converter with On-chip Capacitor multiplyed Compensation circuit (온칩된 커패시터 채배기법 적용 보상회로를 갖는 DC to DC 벅 변환기 설계)

  • Park, Seung-Chan;Lim, Dong-Kyun;Yoon, Kwang-Sub
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.537-538
    • /
    • 2008
  • A step-down DC-DC converter with On-chip Compensation for battery-operated portable electronic devices which are designed in 0.18um CMOS standard process. In an effort to improve low load efficiency, this paper proposes the PFM (Pulse Frequency modulation) voltage mode 1MHz switching frequency step-down DC-DC converter with on-chip compensation. Capacitor multiplier method can minimize error amplifier compensation block size by 20%. It allows the compensation block of DC-DC converter be easily integrated on a chip and occupy less layout area. But capacitor multiplier operation reduces DC-DC converter efficiency. As a result, this converter shows maximum efficiency over 87% for the output voltage of 1.8V (input voltage : 3.3V), maximum load current 500mA, and 0.14% output ripple voltage. The total core chip area is $mm^2$.

  • PDF

250 mV Supply Voltage Digital Low-Dropout Regulator Using Fast Current Tracking Scheme

  • Oh, Jae-Mun;Yang, Byung-Do;Kang, Hyeong-Ju;Kim, Yeong-Seuk;Choi, Ho-Yong;Jung, Woo-Sung
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.961-971
    • /
    • 2015
  • This paper proposes a 250 mV supply voltage digital low-dropout (LDO) regulator. The proposed LDO regulator reduces the supply voltage to 250 mV by implementing with all digital circuits in a$0.11{\mu}m$ CMOS process. The fast current tracking scheme achieves the fast settling time of the output voltage by eliminating the ringing problem. The over-voltage and under-voltage detection circuits decrease the overshoot and undershoot voltages by changing the switch array current rapidly. The switch bias circuit reduces the size of the current switch array to 1/3, which applies a forward body bias voltage at low supply voltage. The fabricated LDO regulator worked at 0.25 V to 1.2 V supply voltage. It achieved 250 mV supply voltage and 220 mV output voltage with 99.5% current efficiency and 8 mV ripple voltage at $20{\mu}A$ to $200{\mu}A$ load current.

A New Phase Shift Full Bridge Converter with Serially Connected Two Transformers (직렬 연결된 두 개의 트랜스포머를 갖는 새로운 위상 천이 풀 브릿지 컨버터)

  • 구관본;김태성;문건우;윤명중
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.5
    • /
    • pp.443-452
    • /
    • 2002
  • A new phase shift full bridge (PSFB) converter with serially connected two transformers for telecommunication equipments of several hundred watts is proposed. The main features of the proposed converter are a wide input voltage range, an easiness to meet the requirement for zero voltage switching (ZVS) condition at a light load, and a small output voltage ripple. Furthermore, the serially connected two transformers can replace both a main transformer and an output inductor since the two transformers act as not only a main transformer but an output inductor by turns. Therefore, there is no need to use an output inductor, then the proposed converter features high power density. A mode analysis, design equations through a large signal modeling, and experimental results are presented to verify the validity of the proposed converter.

A Study on the Output Characteristics Comparison of High Frequency Resonant Inverter Type X-ray Generators in Short Exposure Time (고주파 공진형 인버터식 X-선 장치의 단시간 출력특성 비교 연구)

  • 정수복;이성길;임홍우;백형래
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.66-72
    • /
    • 1999
  • This paper deals with the output characteristics of resonant PWM inverter type X-ray generators connected to different DC power units i.e. a single phase full bridge rectifier, a three phase full bridge rectifier and a power storage unit(PSU). The quality of X-ray beam depends on the pulsating waveforms of DC voltage supplied to the X-ray tube. In a X-ray generator, the waveform of DC output voltage can be affected from affected from harmonic distortion of DC input power. When a tube voltage waveform is distorted, the property of X-ray beam such as reproducibility, linearity and dose can be reduced. Therefore, we compared DC output waveforms and dose with three type of DC power units and show the experimental results in this paper.

Analysis of a Buck DC-DC Converter for Smart Electronic Applications (스마트기기용 강압형 DC-DC 변환기 특성해석)

  • Kang, Bo-gyeong;Na, Jae-Hun;Song, Han-Jung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.373-379
    • /
    • 2019
  • Nowadays, the IoT portable electronic devices have become more useful and diverse, so they require various supply voltage levels to operate. This paper presents a DC-DC buck converter with pulse width modulation (PWM) for portable electronic devices. The proposed step-down DC-DC converter consists of passive elements such as capacitors, inductors, and resistors and an integrated chip (IC) for signal control to reduce power consumption and improves ripple voltage with the resolution. The proposed DC-DC converter is simulated and analyzed in PSPICE circuit design platform, and implemented on the prototype PCB board with a Texas Instruments LM5165 IC. The proposed buck converter is showed 92.6% of peak efficiency including a load current range of 4-10 mA, 3.29 mV of the voltage ripple at 5 V output voltage for the supply voltage 12 V. Measured and Simulated power efficiency are made good agreement with each other.

Design and Control of the Phase Shift Full Bridge Converter for the On-board Battery Charger of Electric Forklifts

  • Kim, Tae-Hoon;Lee, Seung-Jun;Choi, Woo-Jin
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.113-119
    • /
    • 2012
  • This paper describes the design and control of a phase shift full bridge converter with a current doubler, which can be used for the on-board charger for the lead-acid battery of electric forklifts. Unlike the common resistance load, the battery has a large capacitance element and it absorbs the entire converter output ripple current, thereby shortening the battery life and degrading the system efficiency. In this paper a phase shift full bridge converter with a current doubler has been adopted to decrease the output ripple current and the transformer rating of the charger. The charge controller is designed by using the small signal model of the converter, taking into consideration the internal impedance of the battery. The stability and performance of the battery charger is then verified by constant current (CC) and constant voltage (CV) charge experiments using a lead-acid battery bank for an electric forklift.