• 제목/요약/키워드: Orlicz function

검색결과 30건 처리시간 0.024초

COMMUTATORS OF THE MAXIMAL FUNCTIONS ON BANACH FUNCTION SPACES

  • Mujdat Agcayazi;Pu Zhang
    • 대한수학회보
    • /
    • 제60권5호
    • /
    • pp.1391-1408
    • /
    • 2023
  • Let M and M# be Hardy-Littlewood maximal operator and sharp maximal operator, respectively. In this article, we present necessary and sufficient conditions for the boundedness properties for commutator operators [M, b] and [M#, b] in a general context of Banach function spaces when b belongs to BMO(?n) spaces. Some applications of the results on weighted Lebesgue spaces, variable Lebesgue spaces, Orlicz spaces and Musielak-Orlicz spaces are also given.

APPROXIMATION BY INTERPOLATING POLYNOMIALS IN SMIRNOV-ORLICZ CLASS

  • Akgun Ramazan;Israfilov Daniyal M.
    • 대한수학회지
    • /
    • 제43권2호
    • /
    • pp.413-424
    • /
    • 2006
  • Let $\Gamma$ be a bounded rotation (BR) curve without cusps in the complex plane $\mathbb{C}$ and let G := int $\Gamma$. We prove that the rate of convergence of the interpolating polynomials based on the zeros of the Faber polynomials $F_n\;for\;\bar G$ to the function of the reflexive Smirnov-Orlicz class $E_M (G)$ is equivalent to the best approximating polynomial rate in $E_M (G)$.

On Some New Paranormed Difference Sequence Spaces Defined by Orlicz Functions

  • Tripathy, Binod Chandra;Dutta, Hemen
    • Kyungpook Mathematical Journal
    • /
    • 제50권1호
    • /
    • pp.59-69
    • /
    • 2010
  • The main aim of this article is to introduce a new class of sequence spaces using the concept of n-norm and to investigate these spaces for some linear topological structures as well as examine these spaces with respect to derived (n-1)-norm. We use an Orlicz function, a bounded sequence of positive real numbers and some difference operators to construct these spaces so that they become more generalized and some other spaces can be derived under special cases. These investigations will enhance the acceptability of the notion of n-norm by giving a way to construct different sequence spaces with elements in n-normed spaces.

SUMMABILITY IN MUSIELAK-ORLICZ HARDY SPACES

  • Jun Liu;Haonan Xia
    • 대한수학회지
    • /
    • 제60권5호
    • /
    • pp.1057-1072
    • /
    • 2023
  • Let 𝜑 : ℝn × [0, ∞) → [0, ∞) be a growth function and H𝜑(ℝn) the Musielak-Orlicz Hardy space defined via the non-tangential grand maximal function. A general summability method, the so-called 𝜃-summability is considered for multi-dimensional Fourier transforms in H𝜑(ℝn). Precisely, with some assumptions on 𝜃, the authors first prove that the maximal operator of the 𝜃-means is bounded from H𝜑(ℝn) to L𝜑(ℝn). As consequences, some norm and almost everywhere convergence results of the 𝜃-means, which generalizes the well-known Lebesgue's theorem, are then obtained. Finally, the corresponding conclusions of some specific summability methods, such as Bochner-Riesz, Weierstrass and Picard-Bessel summations, are also presented.

Sequence Space m(M, φ)F of Fuzzy Real Numbers Defined by Orlicz Functions with Fuzzy Metric

  • Tripathy, Binod Chandra;Borgohain, Stuti
    • Kyungpook Mathematical Journal
    • /
    • 제53권3호
    • /
    • pp.319-332
    • /
    • 2013
  • The sequence space $m(M,{\phi})^F$ of fuzzy real numbers is introduced. Some properties of this sequence space like solidness, symmetricity, convergence-free etc. are studied. We obtain some inclusion relations involving this sequence space.

ON ASYMPTOTICALLY f-ROUGH STATISTICAL EQUIVALENT OF TRIPLE SEQUENCES

  • SUBRAMANIAN, N.;ESI, A.
    • Journal of applied mathematics & informatics
    • /
    • 제37권5_6호
    • /
    • pp.459-467
    • /
    • 2019
  • In this work, via Orlicz functions, we have obtained a generalization of rough statistical convergence of asymptotically equivalent triple sequences a new non-matrix convergence method, which is intermediate between the ordinary convergence and the rough statistical convergence. We also have examined some inclusion relations related to this concept. We obtain the results are non negative real numbers with respect to the partial order on the set of real numbers.

PRODUCT-TYPE OPERATORS FROM WEIGHTED BERGMAN-ORLICZ SPACES TO WEIGHTED ZYGMUND SPACES

  • JIANG, ZHI-JIE
    • 대한수학회보
    • /
    • 제52권4호
    • /
    • pp.1383-1399
    • /
    • 2015
  • Let ${\mathbb{D}}=\{z{\in}{\mathbb{C}}:{\mid}z{\mid}<1\}$ be the open unit disk in the complex plane $\mathbb{C}$, ${\varphi}$ an analytic self-map of $\mathbb{D}$ and ${\psi}$ an analytic function in $\mathbb{D}$. Let D be the differentiation operator and $W_{{\varphi},{\psi}}$ the weighted composition operator. The boundedness and compactness of the product-type operator $W_{{\varphi},{\psi}}D$ from the weighted Bergman-Orlicz space to the weighted Zygmund space on $\mathbb{D}$ are characterized.

ORLICZ SEQUENCE SPACES OF FOUR DIMENSIONAL REGULAR MATRIX AND THEIR CLOSED IDEAL

  • Raj, Kuldip;Pandoh, Suruchi;Choudhary, Anu
    • 호남수학학술지
    • /
    • 제41권4호
    • /
    • pp.725-744
    • /
    • 2019
  • In this paper we introduce some new types of double difference sequence spaces defined by a new definition of convergence of double sequences and a double series with the help of sequence of Orlicz functions and a four dimensional bounded regular matrices A = (artkl). We also make an effort to study some topological properties and inclusion relations between these sequence spaces. Finally, we compute the closed ideals in the space 𝑙2.

ON THE CONTINUITY OF THE HARDY-LITTLEWOOD MAXIMAL FUNCTION

  • Park, Young Ja
    • 충청수학회지
    • /
    • 제31권1호
    • /
    • pp.43-46
    • /
    • 2018
  • It is concerned with the continuity of the Hardy-Little wood maximal function between the classical Lebesgue spaces or the Orlicz spaces. A new approach to the continuity of the Hardy-Littlewood maximal function is presented through the observation that the continuity is closely related to the existence of solutions for a certain type of first order ordinary differential equations. It is applied to verify the continuity of the Hardy-Littlewood maximal function from $L^p({\mathbb{R}}^n)$ to $L^q({\mathbb{R}}^n)$ for 1 ${\leq}$ q < p < ${\infty}$.

A NOTE ON WEIGHTED COMPOSITION OPERATORS ON MEASURABLE FUNCTION SPACES

  • Jbbarzadeh, M.R.
    • 대한수학회지
    • /
    • 제41권1호
    • /
    • pp.95-105
    • /
    • 2004
  • In this paper we will consider the weighted composition operators W = $uC_{\tau}$ between $L^{p}$$(X,\sum,\mu$) spaces and Orlicz spaces $L^{\phi}$$(X,\sum,\mu$) generated by measurable and non-singular transformations $\tau$ from X into itself and measurable functions u on X. We characterize the functions u and transformations $\tau$ that induce weighted composition operators between $L^{p}$ -spaces by using some properties of conditional expectation operator, pair (u,${\gamma}$) and the measure space $(X,\sum,\mu$). Also, some other properties of these types of operators will be investigated.