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Abstract. The sequence space m(M, φ)F of fuzzy real numbers is introduced. Some

properties of this sequence space like solidness, symmetricity, convergence-free etc. are

studied. We obtain some inclusion relations involving this sequence space.

1. Introduction

The concept of fuzzy set theory was introduced by L.A. Zadeh in the year 1965.
Later on different classes of sequences of fuzzy numbers have been investigated by
Esi [2], Nuray and Savas [6], Syau [9], Tripathy and Baruah ([13], [14], [15]), Tripa-
thy and Borgohain [16], Tripathy and Dutta ([17], [18]), Tripathy and Sarma [20]
and many others.

An Orlicz function is a function M : [0,∞) → [0,∞), which is continuous,
non-decreasing and convex with M(0) = 0,M(x) > 0, for x > 0 and M(x) →∞, as
x→∞.

If the convexity of the Orlicz function is replaced by M(x+ y) ≤M(x) +M(y),
then this function is called as modulus function.

Remark. An Orlicz function satisfies the inequality M(λx) ≤ λM(x) for all λ with
0 < λ < 1.

Sargent [8] introduced the crisp set sequence space m(φ) and studied some
properties of this space. Later on it was studied from the sequence space point of
view and some matrix classes were characterized with one member as m(φ) by Rath
and Tripathy [7], Tripathy [10] and others. In this article we introduce the space
m(M,φ)F of fuzzy real numbers defined by Orlicz function.

Throughout the article wF , `F , `F∞ represent the classes of all, absolutely
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summable and bounded sequences of fuzzy real numbers respectively.

2. Definitions and Background

Definition 2.1. A fuzzy real number X is a fuzzy set on R i.e. a mapping
X : R → I(= [0, 1]) associating each real number t with its grade of member-
ship X(t).

Definition 2.2. A fuzzy real number X is called convex if X(t) ≥ X(s) ∧X(r) =
min(X(s), X(r)), where s < t < r.

Definition 2.3. If there exists t0 ∈ R such that X(t0) = 1, then the fuzzy real
number X is called normal.

Definition 2.4. A fuzzy real number X is said to be upper semi-continuous if for
each ε > 0, X−1([0, a+ ε)), for all a ∈ I is open in the usual topology of R.

The class of all upper semi-continuous, normal, convex fuzzy real numbers is
denoted by R(I).

Definition 2.5. For X ∈ R(I), the α-level set Xα, for 0 < α ≤ 1 is defined by,
Xα = {t ∈ R : X(t) ≥ α}. The 0-level set of X i.e. X0 is the closure of strong
0-cut, i.e. cl{t ∈ R : X(t) > 0}.

Definition 2.6. The absolute value of X ∈ R(I) is defined by,

|X|(t) =
{

max{X(t), X(−t)}, for t ≥ 0 ;
0 otherwise.

Definition 2.7. For r ∈ R and r ∈ R(I) is defined as,

r(t) =
{

1 if t = r ;
0 if t 6= r.

Definition 2.8. The additive and multiplicative identities of R(I) are denoted by
0 and 1.

Definition 2.9. Let D be the set of all closed bounded intervals X = [XL, XR].
Define d : D×D → R by d(X,Y ) = max{|XL−Y L|, |XR−Y R|}. Then clearly

(D, d) is a complete metric space.
Define d : R(I) × R(I) → R by d(X,Y ) = sup

0<α≤1
d(Xα, Y α), for X,Y ∈ R(I).

Then it is well known that (R(I), d) is a complete metric space.

Definition 2.10. A sequence X = (Xk) of fuzzy real numbers is said to con-
verge to the fuzzy number X0, if for every ε > 0, there exists k0 ∈ N such that
d(Xk, X0) < ε, for all k ≥ k0.
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Definition 2.11. A sequence space E is said to be solid if (Yn) ∈ E, whenever
(Xn) ∈ E and |Yn| ≤ |Xn|, for all n ∈ N .

Definition 2.12. LetX = (Xn) be a sequence, then S(X) denotes the set of all per-
mutations of the elements of (Xn) i.e. S(X) = {(Xπ(n)) : π is a permutation of N}.
A sequence space E is said to be symmetric if S(X) ⊂ E for all X ∈ E.

Definition 2.13. A sequence space E is said to be convergence-free if (Yn) ∈ E
whenever (Xn) ∈ E and Xn = 0 implies Yn = 0.

Definition 2.14. A sequence space E is said to be monotone if E contains the
canonical pre-images of all its step spaces.

Lemma 2.1. A sequence space E is solid implies that E is monotone.

Definition 2.15. Let ℘s be the class of all subsets of N those do not contain
more than s number of elements. Throughout (φn) is a non-decreasing sequence of
positive real numbers such that nφn+1 ≤ (n+ 1)φn for all n ∈ N .

The space m(φ) introduced by Sargent [8] is defined by,

m(φ) =

{
(xk) ∈ w : ‖x‖m(φ) = sup

s≥1,σ∈℘s

1
φs

∑
k∈σ

|xk| <∞

}
.

Afterwards different types of generalizations of the classes of sequences m(φ)
was introduced and investigated by Rath and Tripathy [7], Tripathy ([10], [11]) and
many others.

Definition 2.16. Lindenstrauss and Tzafriri [5] used the notion of Orlicz function
and introduced the sequence space:

`M =

{
x ∈ w :

∞∑
k=1

M

(
|xk|
ρ

)
, for some ρ > 0

}

The space `M with the norm,

‖x‖ = inf

{
ρ > 0 :

∞∑
k=1

M

(
|xk|
ρ

)
≤ 1

}
,

becomes a Banach space, which is called an Orlicz sequence space. The space `M is
closely related to the space `p, which is an Orlicz sequence space with M(x) = xp,
for 1 ≤ p ≤ ∞.

In the later stage different classes of Orlicz sequence spaces were introduced and
studied by Altin, Et and Tripathy [1], Esi [2], Tripathy, Altin and Et [12], Tripathy
and Mahanta [19], Tripathy and Sarma ([20], [21]) and many others.
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Definition 2.17. Let dF : R(I)×R(I) → R(I) be the fuzzy metric. Let the map-
pings L,M : [0, 1]× [0, 1] → [0, 1] be symmetric, non-decreasing in both arguments
and satisfy, L[0, 0] = 0 and M [1, 1] = 1. i.e. L = min{p, q} and M = max{p, q},
where p, q ∈ [0, 1].

Let λ : R(I) × R(I) → R such that λ(X,Y ) = sup
0<α≤1

λα(Xα, Y α), where λα :

R×R→ R and λα(Xα, Y α) = min{|Xα
1 − Y α1 |, |Xα

2 − Y α2 |}.
Similarly, let ρ : R(I) × R(I) → R be such that ρ(X,Y ) = sup

0<α≤1
ρα(Xα, Y α),

where ρα : R×R→ R and ρα(Xα, Y α) = max{|Xα
1 − Y α1 |, |Xα

2 − Y α2 |}.

Since the distance between two fuzzy numbers is again a fuzzy number, so the
α- level set of this distance dF between the fuzzy real numbers X and Y is denoted
by,

[d(X,Y )]α = [λα(Xα, Y α), ρα(Xα, Y α)], 0 < α ≤ 1.

The quadruple (R(I), dF ,M,N) is called a fuzzy metric space and dF is a fuzzy
metric, if,

1. dF (X,Y ) = 0 if and only if X = Y.

2. dF (X,Y ) = dF (Y,X), for all X,Y ∈ R(I).

3. For all X,Y, Z ∈ R(I),
(i) dF (X,Y )(s+ t) ≥ L(dF (X,Z)(s), dF (Z, Y )(t)), whenever s ≤ λ1(X,Z),
t ≤ λ1(Z, Y ) and s+ t ≤ λ1(X,Y ).
(ii) dF (X,Y )(s+t) ≤ R(dF (X,Z)(s), dF (Z, Y )(t)), whenever s ≥ λ1(X,Z),
t ≥ λ1(Z, Y ) and s+ t ≥ λ1(X,Y ).

Using the concept of Orlicz function and fuzzy metric, we introduce the following
sequence spaces,

m(M,φ)F

=

{
(Xk) ∈ wF : sup

s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
λ(Xk, 0)

r

)
; sup
s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
ρ(Xk, 0)

r

)}
,

for all r > 0

3. Main Results

Theorem 3.1. The sequence space m(M,φ)F is a metric space with the metric
defined by,

d(X,Y )M

=inf

{
r > 0 : sup

s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
λ(Xk, 0)

r

)
≤ 1; sup

s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
ρ(Xk, 0)

r

)
≤ 1

}
,
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for X,Y ∈ m(M,φ)F

Proof. Let X,Y, Z ∈ m(M,φ)F .
(i) d(X,Y )M = 0.
This implies,

λ(Xk, Yk) = 0 and ρ(Xk, Yk) = 0, for all k ∈ N.( Since M(0) = 0).

Which implies,

sup
0<α≤1

λα(Xα
k , Y

α
k ) = 0 ⇒ λα(Xα

k , Y
α
k ) = 0, for all α ∈ (0, 1].

(3.1) ⇒ min{|Xα
k1 − Y αk1|, |Xα

k2 − Y αk2|} = 0, for all α ∈ (0, 1].

sup
0<α≤1

ρα(Xα
k , Y

α
k ) = 0 ⇒ ρα(Xα

k , Y
α
k ) = 0, for all α ∈ (0, 1].

(3.2) ⇒ max{|Xα
k1 − Y αk1|, |Xα

k2 − Y αk2|} = 0, for all α ∈ (0, 1].

From (3.1) and (3.2), it follows that, Xk = Yk ⇒ X = Y.

Conversely, assume that, X = Y . Then, using the definition of λ and ρ, we get,

λα(Xα
k , Y

α
k ) = 0 and ρα(Xα

k , Y
α
k ) = 0, for all k ∈ N,α ∈ (0, 1].

Which implies,

sup
0<α≤1

λα(Xα
k , Y

α
k ) = 0 and sup

0<α≤1
ρα(Xα

k , Y
α
k ) = 0, for all k ∈ N.

It follows that, λ(Xk, Yk) = 0 and ρ(Xk, Yk) = 0.
Using the continuity of M , we get, d(X,Y )M = 0. Which shows that,

d(X,Y )M = 0 if and only if X = Y .

(ii) d(X,Y )M

= inf

{
r > 0 : sup

s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
λ(Xk, Yk)

r

)
≤ 1; sup

s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
ρ(Xk, Yk)

r

)
≤1

}
.

From the definition of λ, it follows,

λ(Xk, Yk) = sup
0<α≤1

λα(Xα
k , Y

α
k )

= sup
0<α≤1

[min{|Xα
k1, Y

α
k1|, |Xα

k2, Y
α
k2|}]

= sup
0<α≤1

[min{|Y αk1, Xα
k1|, |Y αk2, Xα

k2|}]

= sup
0<α≤1

λα(Y αk , X
α
k )

= λ(Yk, Xk).
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Proceeding in the same way, we get, ρ(Xk, Yk) = ρ(Yk, Xk). Thus we get,

inf

{
r > 0 : sup

s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
λ(Xk, Yk)

r

)
≤ 1; sup

s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
ρ(Xk, Yk)

r

)
≤1

}

= inf

{
r > 0 : sup

s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
λ(Yk, Xk)

r

)
≤1; sup

s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
ρ(Yk, Xk)

r

)
≤1

}
= d(Y,X)M . Hence, d(X,Y )M = d(Y,X)M .

(iii) Let r1, r2 > 0 such that,

sup
s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
λ(Xk, Zk)

r1

)
≤ 1.

sup
s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
λ(Zk, Yk)

r2

)
≤ 1.

Let r = r1 + r2, then we have,

sup
s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
λ(Xk, Yk)

r

)
≤ sup
s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
λ(Xk, Zk)
r1 + r2

+
λ(Zk, Yk)
r1 + r2

)
≤ sup
s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
r1

r1 + r2

(
λ(Xk, Zk)

r1

)
+

r2
r1 + r2

(
λ(Zk, Yk)

r2

))
≤ sup
s≥1,σ∈℘s

1
φs

r1
r1 + r2

∑
k∈σ

M

(
λ(Xk, Zk)

r1

)
+ sup
s≥1,σ∈℘s

1
φs

r2
r1 + r2

∑
k∈σ

M

(
λ(Zk, Yk)

r2

)
≤ 1.

Since r’s are non-negative, so taking the infimum of such r’s, we get,

inf

{
r > 0 : sup

s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
λ(Xk, Yk)

r

)
≤ 1

}

≤ inf

{
r1 > 0 : sup

s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
λ(Xk, Zk)

r1

)
≤ 1

}

+ inf

{
r2 > 0 : sup

s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
λ(Zk, Yk)

r2

)
≤ 1

}
Proceeding in the same way, we get,

inf

{
r > 0 : sup

s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
ρ(Xk, Yk)

r

)
≤ 1

}
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≤ inf

{
r1 > 0 : sup

s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
ρ(Xk, Zk)

r1

)
≤ 1

}

+ inf

{
r2 > 0 : sup

s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
ρ(Zk, Yk)

r2

)
≤ 1

}
Thus we have,

inf

{
r > 0 : sup

s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
λ(Xk, Yk)

r

)
≤ 1;

sup
s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
ρ(Xk, Yk)

r

)
≤ 1

}

≤ inf

{
r1 > 0 : sup

s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
λ(Xk, Zk)

r1

)
≤ 1;

sup
s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
ρ(Xk, Zk)

r1

)
≤ 1

}

+inf

{
r2 > 0 : sup

s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
λ(Zk, Yk)

r2

)
≤ 1;

sup
s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
ρ(Zk, Yk)

r2

)
≤ 1

}
⇒ d(X,Y )M ≤ d(X,Z)M + d(Z, Y )M .

This proves that m(M,φ)F is a metric space. 2

Theorem 3.2. The sequence space m(M,φ)F is a complete metric space with the
metric defined by,

d(X,Y )M = inf

{
r > 0 : sup

s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
λ(Xk, Yk)

r

)
≤ 1;

sup
s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
ρ(Xk, Yk)

r

)
≤ 1

}
,

for X,Y ∈ m(M,φ)F

Proof. Let (X(i)) be a Cauchy sequence in m(M,φ)F such that, X(i) = (X(i)
n )∞n=1.

Let ε > 0 be given. For a fixed x0 > 0, choose p > 0 such that M
(
px0
2

)
≥ 1.

Then there exists a positive integer n0 = n0(ε) such that,

d(X(i), X(j))M <
ε

px0
, for all i, j ≥ n0.
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By the definition of dM , we get;

inf

{
r > 0 : sup

s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
λ(X(i)

k , X
(j)
k )

r

)
≤ 1;

sup
s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
ρ(X(i)

k , X
(j)
k )

r

)
≤ 1

}
< ε

(3.3)

for all i, j ≥ n0. Which implies,

(3.4) sup
s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
λ(X(i)

k , X
(j)
k )

r

)
≤ 1

(3.5) sup
s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
ρ(X(i)

k , X
(j)
k )

r

)
≤ 1

From (3.4) we get,

sup
s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
λ(X(i)

k , X
(j)
k )

r

)
≤ 1

On taking s = 1 and varying σ over ℘s, we get,

∑
k∈σ

M

(
λ(X(i)

k , X
(j)
k )

r

)
≤ φ1, for all i, j ≥ n0.

⇒M

(
λ(X(i)

k , X
(j)
k )

d(X(i), X(j))

)
≤ φ1 ≤M

(px0

2

)
.

Using the continuity of M , we get,

λα(X(i)
k , X

(j)
k ) ≤ px0

2
.
ε

px0
=
ε

2
,

i.e (X(i)
k ) is a Cauchy sequence of R(I). Since R(I) is complete, so it follows that,

(X(i)
k ) is also convergent.
Let, lim

i
X

(i)
k = Xk, for each k ∈ N. We have to prove that,

lim
i
X(i) = X and X ∈ m(M,φ)F .

Since M is continuous, so on taking j →∞ and fixing i, we get from (3.4);

sup
s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
λ(X(i)

k , Xk)
r

)
≤ 1, for some r > 0 and i ≥ n0.
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Proceeding in the same way, we get from (3.5):

sup
s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
ρ(X(i)

k , Xk)
r

)
≤ 1, for some r > 0 and i ≥ n0.

Now on taking the infimum of such r’s together, we get from (3.3):

inf

{
r > 0 : sup

s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
λ(X(i)

k , Xk)
r

)
;

sup
s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
ρ(X(i)

k , Xk)
r

)
≤ 1

}
< ε,

for some r > 0 and i ≥ n0. Which shows, d(X(i), X)M < ε, for all i ≥ n0. i.e.
lim
i
X(i) = X.

Now, to show that X ∈ m(M,φ)F . We have,

d(X, θ)M ≤ d(X,X(i))M + d(X(i), θ)M
< ε+M, for all i ≥ n0(ε).

i.e. d(X, θ)M is finite. Which implies x ∈ m(M,φ)F . Hence m(M,φ)F is a complete
metric space. This completes the proof of the theorem. Proofs are similar for other
spaces also. 2

Theorem 3.3. The sequence space m(M,φ)F is solid.

Proof. Let (Xk) ∈ m(M,φ)F . Then we have, for some r > 0,

sup
s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
λα(Xk, 0)

r

)
<∞; sup

s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
ρα(Xk, 0)

r

)
<∞.

Let (Yk) be a sequence of fuzzy numbers with,

[d(Yk, 0)]α = [λα(Y αk , 0), ρα(Y αk , o)], for 0 < α ≤ 1,

Such that, λ(Yk, 0) ≤ λ(Xk, 0) and ρ(Yk, 0) ≤ ρ(Xk, 0).

Since M is non-decreasing continuous function, so we get, for some r > 0,

M

(
λ(Yk, 0)

r

)
≤M

(
λ(Xk, 0)

r

)
and M

(
ρ(Yk, 0)

r

)
≤M

(
ρ(Xk, 0)

r

)
.

Which implies,

sup
s≥1,σ∈℘s

1
φs
M

(
λ(Yk, 0)

r

)
≤ sup
s≥1,σ∈℘s

1
φs
M

(
λ(Xk, 0)

r

)
<∞, for some r > 0.
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sup
s≥1,σ∈℘s

1
φs
M

(
ρ(Yk, 0)

r

)
≤ sup
s≥1,σ∈℘s

1
φs
M

(
ρ(Xk, 0)

r

)
<∞, for some r > 0.

Which implies,

sup
s≥1,σ∈℘s

1
φs
M

(
λ(Yk, 0)

r

)
<∞, for some r > 0.

sup
s≥1,σ∈℘s

1
φs
M

(
ρ(Yk, 0)

r

)
<∞, for some r > 0.

Which shows, (Yk) ∈ m(M,φ)F . Hence, m(M,φ)F is solid. This completes the
proof. 2

Theorem 3.4. The sequence space m(M,φ)F is symmetric.

Proof. Let (Xk) ∈ m(M,φ)F and (Yk) be a rearrangement of (Xk), such that,

Xk = Ymk
, for each k ∈ N.

Then, we have, λ(Xk, 0) = λ(Ymk
, 0) and ρ(Xk, 0) = ρ(Ymk

, 0).
Using the continuity of M , we get,

sup
s≥1,σ∈℘s

1
φs
M

(
λ(Xk, 0)

r

)
= sup
s≥1,σ∈℘s

1
φs
M

(
λ(Ymk

, 0)
r

)
, for some r > 0.

sup
s≥1,σ∈℘s

1
φs
M

(
ρ(Xk, 0)

r

)
= sup
s≥1,σ∈℘s

1
φs
M

(
ρ(Ymk

, 0)
r

)
, for some r > 0.

Which implies,

sup
s≥1,σ∈℘s

1
φs
M

(
λ(Ymk

, 0)
r

)
<∞ and sup

s≥1,σ∈℘s

1
φs
M

(
ρ(Ymk

, 0)
r

)
<∞,

for some r > 0. Which shows, (Yk) ∈ m(M,φ)F . Hence m(M,φ)F is symmetric.
This completes the proof. 2

Proposition 3.1. The sequence space m(M,φ)F is not convergence-free.

Proof. The result follows from the following example.

Example 3.1. Consider the sequence (Xk) defined as follows:

Xk(t) =

 1 + kt, for t ∈ [− 1
k , 0]

1− kt, for t ∈ [0, 1
k ]

0 otherwise

Then we have, for some r > 0,

sup
s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
λ(Xk, 0)

r

)
<∞
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and

sup
s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
ρ(Xk, 0)

r

)
<∞

Which shows, (Xk) ∈ m(M,φ)F .
Now, let us take another sequence (Yk) such that,

Yk(t) =
{

1 + t
k2 , for t ∈ [−k2, 0]

1− t
k2 , for t ∈ [0, k2]

But,

sup
s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
λ(Yk, 0)

r

)
= ∞ and sup

s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
ρ(Yk, 0)

r

)
= ∞

Thus, (Yk) /∈ m(M,φ)F . Thus m(M,φ)F is not convergence-free. This completes
the proof. 2

Proposition 3.2. m(M,φ)F ⊆ m(M,φ, p)F , for 1 ≤ p <∞.

Proof. Let X ∈ m(M,φ)F , then we have, for some r > 0,

sup
s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
λ(Xk, 0)

r

)
= K(<∞)

Hence, for each fixed s, we have,

∑
k∈σ

M

(
λ(Xk, 0)

r

)
≤ Kφs, for σ ∈ ℘s.

⇒

[∑
k∈σ

(
M

(
λ(Xk, 0)

r

))p] 1
p

≤ Kφs, for σ ∈ ℘s.

⇒ sup
s≥1,σ∈℘s

1
φs

[∑
k∈σ

(
M

(
λ(Xk, 0)

r

))p] 1
p

≤ K.

⇒ sup
s≥1,σ∈℘s

1
φs

[∑
k∈σ

(
M

(
λ(Xk, 0)

r

))p] 1
p

<∞.

Proceeding in the same way, we get,

sup
s≥1,σ∈℘s

1
φs

[∑
k∈σ

(
M

(
ρ(Xk, 0)

r

))p] 1
p

<∞.

Which implies X ∈ m(M,φ, p)F , for 1 ≤ p <∞.
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This completes the proof. 2

Proposition 3.3. m(M,φ)F ⊆ m(M,ψ)F if and only if sup
s≥1

(
φs
ψs

)
< ∞, for

0 < p <∞.

Proof. Suppose, sup
s≥1

(
φs
ψs

)
= K(<∞), then we have, φs ≤ Kψs.

Now, if (Xk) ∈ m(M,φ)F , then,

sup
s≥1,σ∈℘s

1
φs

∑
k∈σ

M

(
λ(Xk, 0)

r

)
<∞.

⇒ sup
s≥1,σ∈℘s

1
Kψs

∑
k∈σ

M

(
λ(Xk, 0)

r

)
≤ ∞.

⇒ (Xk) ∈ m(M,ψ)F .

Hence, m(M,φ)F ⊆ m(M,ψ)F .

Conversely, suppose that m(M,φ)F ⊆ m(M,ψ)F . To show that, sup
s≥1

(
φs
ψs

)
=

sup
s≥1

(ηs) <∞.

Suppose, sup
s≥1

(ηs) = ∞. Then there exists a subsequence (ηsi) of (ηs) such that,

lim
i→∞

(ηsi) = ∞.

Then for (Xk) ∈ m(M,φ)F , we have,

sup
s≥1,σ∈℘s

1
ψs

∑
k∈σ

M

(
λ(Xk, 0)

r

)
≥ sup
si≥1,σ∈℘si

ηsi

φsi

∑
k∈σ

M

(
λ(Xk, 0)

r

)
= ∞.

sup
s≥1,σ∈℘s

1
ψs

∑
k∈σ

M

(
λ(Xk, 0)

r

)
= ∞.

Proceeding in the same way, we get,

sup
s≥1,σ∈℘s

1
ψs

∑
k∈σ

M

(
ρ(Xk, 0)

r

)
= ∞.

Which implies that (Xk) /∈ m(M,ψ)F , a contradiction. This completes the proof.2

Corollary 3.1. m(M,φ)F = m(M,ψ)F if and only if sup
s≥1

(ηs) <∞ and sup
s≥1

(η−1
s ) <

∞, where ηs = φs

ψs
.
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Theorem 3.5. `p(M)F ⊆ m(M,φ, p)F ⊆ `∞(M)F , for 1 ≤ p <∞.

Proof. On taking M(x) = xp, for 1 ≤ p < ∞ and φn = 1, for all n ∈ N . We get,
m(M,φ, p)F = `p(M)F . So, the first inclusion is clear.

Next, suppose that, (Xk) ∈ m(M,φ, p)F that implies that,

sup
s≥1,σ∈℘s

1
φs

(∑
k∈σ

(
M

(
λ(Xk, 0)

r

))p) 1
p

= K(<∞).

For, s = 1,M
(
λ(Xk,0)

r

)
≤ Kφ1, k ∈ σ. Which implies that, sup

k≥1
M

(
λ(Xk, 0)

r

)
<

∞.
Following the same way, we get,

sup
k≥1

M

(
λ(Xk, 0)

r

)
<∞.

Which implies,(Xk) ∈ `∞(M)F . This completes the proof. 2

Putting ψn = 1, for all n ∈ N , in Corollary 3.1, we get,

Proposition 3.4. m(M,φ, p)F = `p(M)F if and only if sup
s≥1

(φs) < ∞ and

sup
s≥1

(φ−1
s ) <∞.

Putting ψn = n, for all n ∈ N , in Corollary 3.1, we get,

Corollary 3.2. m(M,φ, p)F = `∞(M)F if lim
s→∞

(
φs
s

)
> 0, for 0 < p <∞.
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