• Title/Summary/Keyword: Organic/inorganic hybrid

Search Result 368, Processing Time 0.033 seconds

Use of Core-Crosslinked Amphiphilic Polymer Nanoparticles as Templates for Synthesis of Nanostructured Inorganic Materials (코아 가교 양친성 고분자 나노입자 템플레이트를 이용한 무기물 나노 구조체 합성)

  • Kim, Hyun-Ji;Kim, Na-Hae;Kim, Juyoung
    • Journal of Adhesion and Interface
    • /
    • v.16 no.1
    • /
    • pp.6-14
    • /
    • 2015
  • In this study, physically and chemically stable core-crosslinked amphiphilic polymer (CCAP) nanoparticles were prepared using amphiphilic reactive precursors via soap-free emulsion process. Obtained CCAP nanoparticles were used as templates for synthesis of nanostructured $TiO_2$ nanoparticles. First, CCAP nanoparticles dispersed aqueous solutions were mixed with titanium isopropoxide to prepare stable organic-inorganic hybrid sols, and then obtained sols were spin coated onto glass substrate to prepare hybrid thin films onto glass, and then hybrid thin films were calcinated at various temperature to remove CCAP. Nanostructure of calcinated thin fims were examined by SEM. To study effect of CCAP nanoparticles on nanostructure of $TiO_2$ nanoparticles, the morphology of $TiO_2$ nanoparticles prepared using various CCAP templates was compared with that of $TiO_2$ nanoparticles prepared using conventional organic template, nonionic surfactant, Triton X-100.

Preparation and Characterization of Photochromic Organic-Inorganic Hybrid Coating Using 1,2-Bis(2,4-dimethyl-5-phenyl-3-thienyl)3,3,4,4,5,5-hexafluoro-1-cyclopentene (1,2-Bis(2,4-dimethyl-5-phenyl-3-thienyl)-3,3,4,4,5,5-hexafluoro-1-cyclopentene을 사용한 유-무기 혼성 광 변색 코팅 막의 제조 및 특성)

  • Lee, Chang-Ho;Lee, Sang-Goo;Lee, Jong-Dae
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.16-21
    • /
    • 2012
  • Organic-inorganic hybrid coating film using 1,2-bis(2,4-dimethyl-5-phenyl-3-thienyl)-3,3,4,4,5,5-hexafluoro-1-cyclopentene (BTHFC) as a photochromic material was prepared under various reaction conditions such as the amounts of tetramethoxysilane (TMOS), various silane coupling agents, and solvent. It was found that color-fading speed and absorbance of the coating film was strongly dependent upon the polarity of silane coupling agent and solvent. In addition, the mole ratio of TMOS and methacryloyloxypropyltrimethoxysilane (MPTMS) was an important factor to determine color-fading speed and absorbance of the coating film. With increasing TMOS contents in coating film, the pencil hardness was increased. On the other hands, the transmittance of coating film was relatively decreased with the increase of TMOS.

Gel Polymer Electrolytes Derived from a Polysilsesquioxane Crosslinker for Lithium-Sulfur Batteries (리튬-황 전지용 폴리실세스키옥산 고분자 가교제로 제조된 겔 고분자 전해질의 전기화학적 특성)

  • Kim, Eunji;Lee, Albert S.;Lee, Jin Hong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.467-471
    • /
    • 2021
  • A ladder-like polysilsesquioxane (LPMA64) functionalized with a crosslinkable group was synthesized and used for the preparation of organic-inorganic hybrid gel polymer electrolytes through a thermal crosslinking process of the liquid electrolytes. A small weight percent of LPMA64 polymer crosslinker (5 wt%) was able to form a well-developed network structure, resulting in good dimensional stability with high ionic conductivity. The lithium-sulfur batteries fabricated with organic-inorganic hybrid gel polymer electrolytes exhibited stable C-rate and cycling performance with excellent Coulombic efficiency due to the alleviated lithium polysulfide shuttling effect during prolonged cycling. The result demonstrates that the organic-inorganic hybrid gel polymer electrolytes could be a promising candidate electrolyte for application in lithium-sulfur batteries.

Corrosion Resistance of Al6061-T6 by Organic/Inorganic Hybrid Coating Solution (유/무기하이브리드 코팅액에 의한 Al6061-T6의 내식 특성)

  • Mi-Hyang Park;Ki-Hang Shin;Byoung-Chul Choi;Byung-Hyun Ahn;Gum-Hwa Lee;Ki-Woo Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.591-598
    • /
    • 2023
  • In this study, the corrosion resistance by salt spray was evaluated using A6061-T6 for an electric vehicle battery pack case coated with an organic/inorganic hybrid solution. The lowest curing temperature of 190 ℃ resulted in significant corrosion and pitting. Meanwhile, no corrosion was observed in the coated specimens at 210 ℃ and 230 ℃ except at 210 ℃ - 6 min and 8 min. The surface of the as-received coating specimen observed by FE-SEM exhibited streaks and dents in the rolling direction, but the coating surface was clean. On the 190 ℃ - 6 min coating specimen, which had a lot of corrosion, rolling streaks spread, and dents were caused by corrosion. The 200 ℃ - 12 min coating specimen did not show corrosion, but it showed an etched surface. In the line profile, Si, the main component of the coating solution, was detected the most, and Ti was also detected. In the coating specimens with salt spray, O increased and Si decreased, regardless of corrosion. The peeling rate by adhesion evaluation was 26 - 87% for the 190 ℃ coating specimen, 4 - 83% for the 210 ℃ coating specimen, and 94 - 100% for the 230 ℃ coating specimen. The optimal curing conditions for the coating solution used in this study were 210 ℃ for 10 min.

Synthesis and structure of ($C_6CH_2NH_3)_2CUCl_4and \;(NH_3C_6C_4C_2H_4C_6NH_3)CUCl_4$ (($C_6CH_2NH_3)_2CUCl_4와 \;(NH_3C_6C_4C_2H_4C_6NH_3)CUCl_4$의 합성과 구조)

  • 김지현;권석순;현준원;허영덕
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.4
    • /
    • pp.135-139
    • /
    • 2004
  • The layered organic-inorganic hybrid compounds($C_6H_5CH_2NH_3)_2CuCl_4$ and ($NH_3C_6/H_4C_2H_4_6/H_4NH_3)CuCl_4$ have been directly synthesized. From the X-ray diffraction data and the organic guest size, the orientation of the intercalated organic amine was determined. The inorganic sheets consist of $CuCl_4^{2-}$layers of comer-sharing octahedra copper chloride. The protonated organic amine was intercalated into the $CuCl_4^{2-}$layers with bilayer structure for ($C_6H_5CH_2NH_3)_2CuCl_4$ and monolayer structure for ($NH_3C_6/H_4C_2H_4_6/H_4NH_3)CuCl_4$.

Liquid crystal effects on poling behaviour of NLO chromophore dispersed in organically modified sol-gel materials (유/무기 졸-겔 재료에 비선형광학 물질의 배향특성에 대한 액정효과)

  • Baek, In-Chan;Seok, Sang-Il;Jin, Moon-Young;Lee, Chang-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.132-132
    • /
    • 2003
  • Second-order nonlinear optical(NLO) materials have been extensively studied for applications in photonic devices, such as frequency doubling and electro-optical(EO) modulation, because of their large optical nonlinearity, excellent processibility, low dielectric constant, and high laser damage thresholds. The poling behaviour of NLO chromophore in organic/inorganic matrixes showed the randomization of poled NLO chromophore in the absence of poling Held. The liquid crystal molecules in a droplet showed a long-range orientational order along a director. Therefore, liquid crystal effects on poling behaviour of NLO chromophore dispersed in organically modified inorganic sol-gel materials were investigated. Using sol-gel process for the development of NLO material has received increasing attention, Organically modifked inorganic NLO sol-Eel materials are obtained via incorporation of the organic NLO active chromophore into an alkoxysilane based inorganic network. One of the most important thing in this works was that tetraethoxysilane(TEOS) and methyltrimathoxysilane(HTMS) were used as precursor followed by hydrolysis and condensation without using any acidic catalyst during the process. The NLO chromophores in the liquid crystal nanodomains were well mixed with I/O hybrid matrix, deposited on transparent ITO-coated glasses. The poling behaviour of liquid crystal effects of NLO chromophore dispersed in I/O hybrid matrix were investigated by UV-vis spectroscopy. Size distribution and morphology of the NLO chromophores doped in the liquid crystal nanodomains dispersed in I/O hybrid matrix were investigated by SEM.

  • PDF

Correlation between Leakage Current of Organic Treated Insulators and Grain Size of Pentacene Deposited film (유기물 처리 절연막의 누설전류 및 펜타센 증착 표면에 생긴 그레인 크기 사이의 상관관계)

  • Oh Teresa;Kim Hong-Bae;Son Jae-Gu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.6 s.348
    • /
    • pp.18-22
    • /
    • 2006
  • The inspection of surface properties under n-octadecyltrichlorosilane treated $SiO_2$ film was carried out by current-voltage characteristic and the scanning electron microscope. The voltage at zero current in low electric field is the lowest at 0.3 % OTS treated $SiO_2$ film with hybrid type. $SiO_2$ films changed from inorganic to hybrid or organic properties according to the increase of OTS content. OTS treated $SiO_2$ films with hybrid properties decreased the leakage currents, and the grain size of pentacene deposited sample was also the most small at the hybrid properties. The perpendicular generation of pentacene molecular was related with the surface of insulators. The surface with hybrid properties decreased the grain size, but that with inorganic or organic properties increased the grain size.

Variable surface coatings composed of organic-inorganic hybrid polymers

  • Kessler, Daniel;Bahnmuller, Stefan;Theato, Patrick
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.315-315
    • /
    • 2006
  • A variable surface coating with the potential to fulfill the requirements of industry will be presented. Via controlled radical polymerization methods from a functionalized Polymethylsilsesquioxane delivers an inorganic-organic block copolymer, which can be easily modified and tuned for different applications. Spin coated or dip coated on various substrates show promising results. By using different block copolymers the contact angle on a silicon wafer can be varied in a range of $90^{\circ}\;up\;to\;145^{\circ}$ After curing and complete condensation a perfect adhesion on glasses, plastics and metals is achieved.

  • PDF

Evaluation of acetaldehyde removal performance of a hybrid adsorbent consisting of organic and inorganic materials (유무기 융복합 흡착제의 아세트알데하이드 제거 성능 평가)

  • Ahn, Hae Young;Lee, Yoon Kyoung;Song, JiHyeon
    • Journal of odor and indoor environment
    • /
    • v.17 no.4
    • /
    • pp.372-380
    • /
    • 2018
  • To abate the problem of odor from restaurants, a hybrid adsorbent consisting of organic and inorganic materials was developed and evaluated using acetaldehyde as a model compound was deveioped and evaluated. Powders of activated carbon, bentonite, and calcium hydroxide were mixed and calcinated to form adsorbent structure. The surface area of the hybrid adsorbent was smaller than that of high-quality activated carbon, but its microscopic image showed that contours and pores were developed on its surface. To determine its adsorption capacity, both batch isotherm and continuous flow column experiments were performed, and these results were compared with those using commercially available activated carbon. The isotherm tests showed that the hybrid adsorbent had a capacity 40 times higher than that of the activated carbon. In addition, the column experiments revealed that breakthrough time of the hybrid adsorbent was 2.5 times longer than that of the activated carbon. These experimental results were fitted to numerical simulations by using a homogeneous surface diffusion model (HSDM); the model estimated that the hybrid adsorbent might be able to remove acetaldehyde at a concentration of 40 ppm for a 5-month period. Since various odor compounds are commonly emitted as a mixture when meat is barbecued, it is necessary to conduct a series of experiments and HSDM simulations under various conditions to obtain design parameters for a full-scale device using the hybrid adsorbent.

Microstructures and Thermal Properties of Polycaprolactone/Epoxy Resin/SiO2 Hybrids

  • He, Lihua;Liu, Pinggui;Ding, Heyan
    • Journal of Adhesion and Interface
    • /
    • v.7 no.4
    • /
    • pp.32-38
    • /
    • 2006
  • A series of organic-inorganic hybrids, PCL/EP/$SiO_2$, involving epoxy resin and triethoxysilane-terminated polycaprolactone elastomer (PCL-TESi) were prepared via polymerization of diglycidyl ether of bisphenol A (DGEBA) with amine curing agent KB-2 and sol-gel process of PCL-TESi. The curing reactions were started from the initially homogeneous mixture of DGEBA, KB-2 and the PCL-TESi. The organicinorganic hybrids containing up to 4.95% (wt) of $SiO_2$ were obtained and characterized by FT-IR, transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). It was experimentally shown that the swelling property in toluene, morphologies and thermal properties of the resulting hybrids were quite dependent on the contents of $SiO_2$. The crosslink network density decreases with increasing of the PCL-TESi. And in TEM, the phase separated morphology of these hybrids was found, which resulted from the coagulation of Si-O-Si networks resulting from $-Si(OC_2H_5)_3$ of PCL-TESi self-curing by hydrolytic silanol condensation, with the advancement of the curing reaction in the modified epoxy resin systems. Meanwhile, the change of the $SiO_2$ content made the morphologies changed from aggregated particles of Si-O-Si in the hybrid to nanocluster of interconnected Si-O-Si particles, then to aggregated Si-O-Si dispersing in the continuous cured epoxy phase again, and last to co-continuous interpenetrating network. The glass transition behavior of the hybrid material was cooperative motion of large chain segments, which were hindered by the inorganic Si-O-Si network. And in TG analysis, the characteristic temperature at 5% of weight loss was evidently increased from $120.5^{\circ}C$ of pure cured epoxy to $277.6^{\circ}C$ of 3.84% (wt) of $SiO_2$ modified epoxy due to the existence of Si-O-Si when PCL-TESi was added in the hybrid.

  • PDF