• Title/Summary/Keyword: Ordinary Differential Equations

Search Result 346, Processing Time 0.022 seconds

Error Control Policy for Initial Value Problems with Discontinuities and Delays

  • Khader, Abdul Hadi Alim A.
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.4
    • /
    • pp.665-684
    • /
    • 2008
  • Runge-Kutta-Nystr$\"{o}$m (RKN) methods provide a popular way to solve the initial value problem (IVP) for a system of ordinary differential equations (ODEs). Users of software are typically asked to specify a tolerance ${\delta}$, that indicates in somewhat vague sense, the level of accuracy required. It is clearly important to understand the precise effect of changing ${\delta}$, and to derive the strongest possible results about the behaviour of the global error that will not have regular behaviour unless an appropriate stepsize selection formula and standard error control policy are used. Faced with this situation sufficient conditions on an algorithm that guarantee such behaviour for the global error to be asympotatically linear in ${\delta}$ as ${\delta}{\rightarrow}0$, that were first derived by Stetter. Here we extend the analysis to cover a certain class of ODEs with low-order derivative discontinuities, and the class of ODEs with constant delays. We show that standard error control techniques will be successful if discontinuities are handled correctly and delay terms are calculated with sufficient accurate interpolants. It is perhaps surprising that several delay ODE algorithms that have been proposed do not use sufficiently accurate interpolants to guarantee asymptotic proportionality. Our theoretical results are illustrated numerically.

SOLUTIONS TO M-POINT BOUNDARY VALUE PROBLEMS OF THIRD ORDER ORDINARY DIFFERENTIAL EQUATIONS AT RESONANCE

  • XUE CHUNYAN;DU ZENGJI;GE WEIGAO
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.229-244
    • /
    • 2005
  • In this paper, we study the third order ordinary differential equation : $$x'(t)=f(t,x(t),x'(t),x'(t)),t{\in}(0,1)$$ subject to the boundary value conditions: $$x'(0)=x'(\xi),x'(1)=^{m-3}{\Sigma}_{i=1}{{\beta}x'({\eta}i),x'(1)=0}$$. Here ${\beta}_{i}{\in}R,\;^{m-3}{\Sigma}_{i=1}\;{\beta}_{i}\;=\;1,\;0<{\eta}_1<{\eta}_2<{\cdots}<{\eta}_{m-3}<1,\;0<\xi<1$. This is the case dimKer L = 2. When the ${\beta}_i$ have different signs, we prove some existence results for the m-point boundary value problem at resonance by use of the coincidence degree theory of Mawhin [12, 13]. Since all the existence results obtained in previous papers are for the case dimKerL = 1, our work is new.

A SCHWARZ METHOD FOR FOURTH-ORDER SINGULARLY PERTURBED REACTION-DIFFUSION PROBLEM WITH DISCONTINUOUS SOURCE TERM

  • CHANDR, M.;SHANTHI, V.
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.5_6
    • /
    • pp.495-508
    • /
    • 2016
  • A singularly perturbed reaction-diffusion fourth-order ordinary differential equation(ODE) with discontinuous source term is considered. Due to the discontinuity, interior layers also exist. The considered problem is converted into a system of weakly coupled system of two second-order ODEs, one without parameter and another with parameter ε multiplying highest derivatives and suitable boundary conditions. In this paper a computational method for solving this system is presented. A zero-order asymptotic approximation expansion is applied in the second equation. Then, the resulting equation is solved by the numerical method which is constructed. This involves non-overlapping Schwarz method using Shishkin mesh. The computation shows quick convergence and results presented numerically support the theoretical results.

A FIFTH ORDER NUMERICAL METHOD FOR SINGULAR PERTURBATION PROBLEMS

  • Chakravarthy, P. Pramod;Phaneendra, K.;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.689-706
    • /
    • 2008
  • In this paper, a fifth order numerical method is presented for solving singularly perturbed two point boundary value problems with a boundary layer at one end point. The two point boundary value problem is transformed into general first order ordinary differential equation system. A discrete approximation of a fifth order compact difference scheme is presented for the first order system. An asymptotically equivalent first order equation of the original singularly perturbed two point boundary value problem is obtained from the theory of singular perturbations. It is used in the fifth order compact difference scheme to get a two term recurrence relation and is solved. Several linear and non-linear singular perturbation problems have been solved and the numerical results are presented to support the theory. It is observed that the present method approximates the exact solution very well.

  • PDF

Model Reference Adaptive Control of a Flexible Structure

  • Yang, Kyung-Jinn;Hong, Keum-Shik;Rhee, Eun-Jun;Yoo, Wan-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1356-1368
    • /
    • 2001
  • In this paper, the model reference adaptive control (MRAC) of a flexible structure is investigated. Any mechanically flexible structure is inherently distributed parameter in nature, so that its dynamics are described by a partial, rather than ordinary, differential equation. The MRAC problem is formulated as an initial value problem of coupled partial and ordinary differential equations in weak form. The well-posedness of the initial value problem is proved. The control law is derived by using the Lyapunov redesign method on an infinite dimensional filbert space. Uniform asymptotic stability of the closed loop system is established, and asymptotic tracking, i. e., convergence of the state-error to zero, is obtained. With an additional persistence of excitation condition for the reference model, parameter-error convergence to zero is also shown. Numerical simulations are provided.

  • PDF

Application of Implicit Function Theorem to Existence of Solutions to Ordinary Differential Equations with Nonlocal Boundary Conditions, I (비국소 경계 조건들을 가진 상미분 방정식들의 근의 존재성에 음함수 정리들의 응용 I)

  • Do, Tae-Sug
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.3
    • /
    • pp.219-224
    • /
    • 2002
  • We consider the problem y"=a(x,y)(y-b), y(0)=0, y'(1)=g(y(${\xi}$), y'(${\xi}$)), (0${\xi}$ fixed in(0,1)) as a model of steady-slate heat conduction in a rod when the heat flux at the end x = 1 is determined by observation of the temperature and heat flux at some interior point ${\xi}$. We establish conditions sufficient for existence, uniqueness.

  • PDF

NUMERICAL METHOD FOR A 2NTH-ORDER BOUNDARY VALUE PROBLEM

  • Xu, Chenmei;Jian, Shuai;Wang, Bo
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.715-725
    • /
    • 2013
  • In this paper, a finite difference scheme for a two-point boundary value problem of 2nth-order ordinary differential equations is presented. The convergence and uniqueness of the solution for the scheme are proved by means of theories on matrix eigenvalues and norm. Numerical examples show that our method is very simple and effective, and that this method can be used effectively for other types of boundary value problems.

Existence of Solutions on a Semi-Infinite Interval for Ordinary Differential Equation with Nonlocal Boundary Conditions (비국소 경계 조건들을 가진 상미분 방정식들의 반무한 구간 상에서 근들의 존재성)

  • Do, Tae-Sug
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.4
    • /
    • pp.309-312
    • /
    • 2002
  • Motivated by the problem of steady-state heat conduction in a rod whose heat flux at one end is determined by observation of the temperature and heat flux at some point ${\xi}$ in the interior of the rod, we consider the problem y"(x)=a(x, y(x))y(x) (0$${\lim_{x{\rightarrow}{\infty}}}y(x)=0,\;y^{\prime}(0)=g(y({\xi}),\;y^{\prime}({\xi}))$$ for some fixed ${\xi}{\in}(0,{\infty})$. We establish conditions guaranteeing existence and uniqueness for this problem on the semi-infinite interval [0,${\infty}$).

  • PDF

Application of Implicit Function Theorem to Existence of Solutions to Ordinary Differential Equations with Nonlocal Boundary Conditions, II (비국소 경계 조건들을 가진 상미분 방정식들의 근의 존재성에 음함수 정리들의 응용 II)

  • Do, Tae-Sug
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.4
    • /
    • pp.303-307
    • /
    • 2002
  • We consider the problem y"=a(x,y)(y-b), (0$$y(0)=0,\;y^{\prime}(1)=g(y({\xi}),\;y^{\prime}({\xi})),\;{\xi}$$ fixed in (0,1). This is a model of steady-state heat conduction in a rod when the heat flux at the end x=1 is determined by observation of the temperature and heat flux at some interior point ${\xi}$. We establish conditions sufficient for existence, uniqueness, and positivity of solutions.

  • PDF

Nonlinear resonance of axially moving GPLRMF plates with different boundary conditions

  • Jin-Peng Song;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.361-371
    • /
    • 2023
  • Boundary condition is an important factor affecting the vibration characteristics of structures, under different boundary conditions, structures will exhibit different vibration behaviors. On the basis of the previous work, this paper extends to the nonlinear resonance behavior of axially moving graphene platelets reinforced metal foams (GPLRMF) plates with geometric imperfection under different boundary conditions. Based on nonlinear Kirchhoff plate theory, the motion equations are derived. Considering three boundary conditions, including four edges simply supported (SSSS), four edges clamped (CCCC), clamped-clamped-simply-simply (CCSS), the nonlinear ordinary differential equation system is obtained by Galerkin method, and then the equation system is solved to obtain the nonlinear ordinary differential control equation which only including transverse displacement. Subsequently, the resonance response of GPLRMF plates is obtained by perturbation method. Finally, the effects of different boundary conditions, material properties (including the GPLs patterns, foams distribution, porosity coefficient and GPLs weight fraction), geometric imperfection, and axial velocity on the resonance of GPLRMF plates are investigated.