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Abstract. Runge-Kutta-Nyström (RKN) methods provide a popular way to solve the

initial value problem (IVP) for a system of ordinary differential equations (ODEs). Users

of software are typically asked to specify a tolerance δ, that indicates in somewhat vague

sense, the level of accuracy required. It is clearly important to understand the precise

effect of changing δ, and to derive the strongest possible results about the behaviour of the

global error that will not have regular behaviour unless an appropriate stepsize selection

formula and standard error control policy are used. Faced with this situation sufficient

conditions on an algorithm that guarantee such behaviour for the global error to be asym-

potatically linear in δ as δ → 0 , that were first derived by Stetter. Here we extend the

analysis to cover a certain class of ODEs with low-order derivative discontinuities, and

the class of ODEs with constant delays. We show that standard error control techniques

will be successful if discontinuities are handled correctly and delay terms are calculated

with sufficient accurate interpolants. It is perhaps surprising that several delay ODE algo-

rithms that have been proposed do not use sufficiently accurate interpolants to guarantee

asymptotic proportionality. Our theoretical results are illustrated numerically.

1. Introduction

Typically an error tolerance δ, that is supplied by the users to control the ac-
curacy of the numerical solution, determines dynamically the meshpoints and the
discrete approximations at these points. The software automatically chosses the
stepsizes based on δ. The best that we can ask in this situation is that if a fixed
problem is solved repeatedly over a resonable range of tolerance values, then the
global error should decrease linearly with δ, such a relationship is reffered to as tol-
erance proportionality (TP) that was first addressed for first order ODEs of IVPs by
Stetter [33], [35]. The DETEST package uses a linear least squares fit of error versus
tolerance as one criterion for evaluating the performance of an initial value solver
see [14], for example. Further analysis directed at explicit Runge-Kutta-Nyström
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methods with continuous extensions was given in [1]. This work is a sequel to [1] and
its aim is to extend the existing analysis to allow for ODEs with low-order derivative
discontinuities and ODEs with constant delays. In the rest of this section, we very
briefly outline the results that will be used later.

We consider the solution of the nonstiff second order ODEs of IVPs

(1) y′′ (t) = f (t, y) , y (t0) = y0, y′ (t0) = y′0 ∈ <m, t0 ≤ t ≤ tend

It is well known that Runge-Kutta-Nyström (RKN) methods produce approxima-
tions for y and y′ only at the end of each step. However, there are important
applications, that require a continuous approximation of y(x) and y′(x) on every
point of a step. In the last few years there has been a lot of research devoted
to providing continuous extensions for RKN methods, see for example, Dormand
and Prince [10], Papageorgiou and Tsitouras [27], [28]. Horn [18] and Fine [15].
We assume that discrete numerical approximation of the problem (1) is produced
by applying the pth order Runge-Kutta-Nyström method. On a particular step
from tn to tn+1, the pth order Runge-Kutta-Nyström method is used to advance
the approximations from yn ≈ y (tn) to yn+1 ≈ y (tn + 1) for the solution over
a step of length hn+1 = tn+1 − tn. The local error for the step is defined as
len+1 := yn+1− zn (tn+1), where the local solution, zn (t), satisfies z

′′
n = f (t, zn (t))

with zn (tn) = yn and z′n (tn) = y′n, we also assume that the problem (1) is suffi-
ciently smooth for the local error expansion of the form

(2) len+1 = ψ̂ (tn,yn) hp+1
n + O

(
hp+2

n

)

to hold, where the continuous function ψ̂ is independent of hn. We further assume
that the error estimate ‖ E (tn,yn, hn) ‖, is computed in the course of the step where

(3) E (tn, yn, hn) = ψ (tn, yn) hp
n + O

(
hp+1

n

)

and ψ is continuous and independent of hn, and ‖ ψ (t, y (t)) ‖6= 0 on [t0, tend].
The step is accepted if the condition ‖ E (tn, yn, hn) ‖≤ δ must hold, where δ is
the local error tolerance specified by the user in order to indicate the level of the
accuracy required. If this condition is violated, the step from tn is re-taken with a
smaller stepsize. The standard asymptotically based stepsize selection formula for
changing stepsize after a successful step is defined as

(4) hn+1 = θhn

(
δ

‖ E ‖
)1/p

,

with the safety factor θ ∈ (0, 1) is introduced in an attempt to avoid rejected steps,
the value θ = 0.9 is typical, other step reduction strategies may be used in practice
after a step rejected , but the details are not important for our analysis. Most of
the commonly used error control method fit into the above framework; in particular
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one of the following error control modes is used extrapolated error-per-step or error-
per-unit step with a pth order RKN method. For the former choice mode the local
error estimate

E = estn = max
{‖δn+1‖∞ ,

∥∥δ′n+1

∥∥
∞

}

and for the latter mode

E = estn = max

{
‖δn+1‖∞

hn
,

∥∥δ′n+1

∥∥
∞

hn

}

where δn+1 = yn+1 − ŷn+1 and δ′n+1 = y′n+1 − ŷ′n+1.

We will use η (t) to denote any continuous interpolant that passes through
the meshpoint data {tn, yn} and takes the values yn at tn and yn+1 at tn+1 for
n = 0, 1, · · · . In particular ηI (t) denotes the ideal interpolant from [34], which is
defined as

(5) ηİ (t) := zn (t) +
[
(t− tn)2 − (t− tn) (hn − 2)

] len+1

2hn
, t ∈ [tn, tn+1]

We point out that ηİ (t) is not necessarily computable, since we are only con-
cerned with the meshpoint approximation (in this section), and that η′

İ
(t) generally

has a jump discontinuity at each meshpoint tn.

In the following theorem, which is taken from [1, Theorem 3.2.1], we use the
convention that “sectionally continuous” means continuous except possibly at the
meshpoint tn, and “sectionally C2” means continuous with the first and second
derivatives which are continuous except possibly at the meshpoints tn, where the
first and second derivatives have jump discontinuities with finite right and left hand
limits.

Theorem 1. Given the initial value problem (1) suppose η (t) is sectionally C2 and
satisfies η (t0) = y0 and η′ (t0) = y′0. Let ε (t) := η (t)−y (t) denote the global error
in η (t). Define condition (I) to be :

ε (t) = v (t) δ + r (t) , t0 ≤ t ≤ tend

where v (t) is C2 and independent of δ and r (t) is sectionally C2 with zeroth, first
and second derivatives of o (δ). Also, define condition (II) to be :

η
′′

(t)− f (t, η (t)) = γ (t) δ + s (t) , t0 ≤ t ≤ tend,

where γ (t) is continuous and independent of δ and s (t) is sectionally continuous
and o (δ). Then condition (I) is equivalent to condition (II).

Condition (I) is a formalization of the concept of tolerance proportionality. For
any fixed point t0 ≤ t ≤ tend , it ensures that the global error is asymptotically
linear in δ. The condition is strong in the sense that it also requires the global error
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in η′ (t) and η
′′

(t) to be asymptotically linear in δ. The equivalent condition (II)
provides a more useful characterization from the point of view of analysis.

We will make the following assumptions regarding the numerical solutions

1. The stepsizes satisfy maxn {hn} = o (1) as δ −→ 0,

2. The function ‖ψ (t, y (t))‖ from (3) is non-vanishing,

3. The initial stepsize is chosen so that

(6) ‖E (t0, y0, h1)‖ = θ−pδ + o (δ) ,

Note that assumption (1) implies convergence of the Runge-Kutta-Nyström
solution; that is, ε (t) −→ 0 as δ −→ 0 (see, for example, [17, Theorem 3.4]). Also,
from assumption (2) the error control criterion ‖E (tn, yn, hn)‖ ≤ δ implies that
a function that is O (hp

n) is also O (δ). Under assumptions (1), (2), and (3) the
ideal interpolant satisfies condition ( I ), and hence the algorithm exhibits tolerance
proportionality, see [1].

The discrete RKN approximation with a continuous extension usually satisfy
the condition q (tn) = yn and q (tn+1) = yn+1 for the solution approximation
and q′ (tn) = y′n and q′ (tn+1) = y′n+1 for the derivative approximation and hence
reffered to as interpolants. Modern interpolants also fit the derivative data at
the meshpoints; that is, q

′′
(tn) = f (tn, yn) and q

′′
(tn+1) = f (tn+1, yn+1) in

which case the corresponding global approximation is a C2 function. Among the
applications for continuous extensions are handling of discontinuities, singularities,
delay differential equations, and the need for the numerical solution at a dense
set of output points (graphical representation of the solution), see for example,
[7], [10], [12], [21]. Such interpolants will not satisfy condition (I) of Theorem 1,
although they may satisfy a weaker condition, see [1]. To be more specific, the RKN
interpolants that have been proposed in the literature can be split into two groups;
if l is the largest integer such that, for any fixed σ ∈ [0, 1],

q (tn + σhn)− zn (tn + σhn) = O
(
hl

n

)
.

In the case of l = p + 1 we get a so-called higher-order interpolant but if l = p
we get a so-called lower-order interpolant. Higher-order interpolants satisfy

(7) q (t)− y (t) = v (t) δ + o (δ) , t0 ≤ t ≤ tend,

where v (t) is C2 and independent of δ, but not q′ (t)− y′ (t) = v′ (t) δ + o (δ) .

Hence, higher-order interpolants preserve the TP in the solution approximation,
but not in the first derivative approximation. For lower-order interpolants we have
q (t) − y (t) = O (δ), but the leading term in the global error does not in general
depend linearly upon δ. This difference in behaviour between the two classes of
interpolants plays a key role in our analysis for delay ODEs.
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In the next section we look at the effect of overriding the usual stepsize selection
mechanism in order to hit an output point exactly or to integrate across a discon-
tinuity. The results of Section 2 are used in Section 3 where error control methods
for constant delay ODE systems are analysed. Finally we test our predictions nu-
merically in both sections and give conclusions in Section 4.

2. Output points and discontinuities

Suppose that the RKN method described above reaches the point tn and uses
(4) to compute the stepsize hn+1 and to continue the integration.There are certain
circumstances under which a method will restrict the stepsize to h∗ < hn+1 in order
to hit the point t∗ := tn +h∗ exactly. This may happen, for example, if t∗ has been
specified as an output point, or if a low-order derivative of the solution is known to
have a discontinuity at t∗. In this case, we have

zn (tn)− y (tn) = v (tn) δ + o (δ) .

A standard differential inequality [17, Theorem 10.2] then gives

zn (t)− y (t) = O (δ) , tn ≤ t ≤ t∗.

Assuming that f is Lipschitzian, it follows that

z′n (t)− y′ (t) = O (δ) , tn ≤ t ≤ t∗,

and hence

zn (t̄)− y (t̄) = zn (tn)− y (tn) + O (h∗δ) = v (tn) δ + o (δ) .

Since v (t) is C2, and independent of δ, we have

(8) zn (t∗)− y (t∗) = v (t∗) δ + o (δ) .

Now the numerical approximation y∗ ≈ y (t∗) satisfies y∗ − zn (t∗) = O(h∗ p +1),
and hence y∗ − zn (t∗) = o (δ), so that, from (8), we have

(9) y∗ − y (t∗) = v (t∗) δ + o (δ) ,

showing that TP in the solution is maintained at t∗. To examine the first derivative
approximation and the second derivative approximation η′I (t) and η

′′

I (t) we note
from (5) that

η′I (t∗)− y′ (t∗) = z′n (t∗) + [2 (t∗ − tn)− (h∗ − 2)]
le∗

2h∗
− y′ (t∗)

η
′′
I (t∗)− y

′′
(t∗) = z

′′
n (t∗) +

le∗

h∗
− y

′′
(t∗)
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where le∗ denote the local error over the last step, le∗ := y∗ − zn (t∗). Hence

η
′′
I (t∗)− y

′′
(t∗) = f (t∗, zn (t∗))− f (t∗, y (t∗)) +

le∗

h∗
(10)

= fy (t∗, y (t∗)) (zn (t∗)− y (t∗)) + O([zn (t∗)− y (t∗)]2)

= fy (t∗, y (t∗)) v (t∗) δ +
le∗

h∗
+ o (δ) ,

using (8). Now the quantity le∗�h∗ behaves like O(h∗ p) as h∗ −→ 0, and hence
will not necessarily be negligible compared with the first term in (10). The key point
to note is that, as δ −→ 0, h∗ will follow a decaying sawtooth pattern, changing
discontinuously each time a meshpoint coincides with t∗. Hence le∗�h∗ will not
behave like a linear function of δ, and it follows that TP in η′I (t∗) and η

′′

I (t∗) can
not be guaranteed. However, the continuous interpolant, q(t) for which q′(t∗) = y∗′

and q
′′
(t∗) = f(t∗, y∗), satisfy

q
′′

(t∗)− y
′′

(t∗) = f (t∗, y∗)− f (t∗, y (t∗))(11)
= fy (t∗, y (t∗)) v (t∗) δ + o (δ) ,

using (9). The function fy (t, y (t)) v (t) is independent of δ, and hence we have a
proportionality result for q

′′
(t∗). In the case where the final stepsize is reduced to

hit t∗ exactly, we can conclude for t0 ≤ t ≤ t∗ that

1. η′I (t) and η
′′
I (t) give TP at all t except t = t∗,

2. q
′′

(t) gives TP at no t except t = t∗.
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Figure 1: Harmonic oscillator equation.

We illustrate these phenomena using the harmonic oscillator equation

(12) y
′′
(t) = −y(t), y(0) = 1, y′(0) = 0,
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which has solution y(t) = cos(t). We implemented the third and fourth order pair
RKN4(3)4FM that appears in ([11], 1987) in extrapolated error-per-step mode; that
is, with the fourth-order formula advancing the solution and the difference between
the third and fourth order values giving the error estimate. Mixed relative-absolute
weights were used in the error measure. The code was made to reduce the final
stepsize, if necessary, so as to hit the output point t∗ = tout exactly. The problem
was solved repeatedly using 100 equally spaced values of t∗ in [0, 20], and after each
integration we recorded the global error in y∗, f (t∗, y∗), and η

′′
I (t∗). Since η

′′
I (t∗)

is not computable in general, we used the approximation f (t∗, w̄(t∗)) + lē∗�h∗.
Here w̄ (t∗) is the result of a step from {tn, yn} of length h∗ using an eighth-order
RKN formula, and lē∗ = y∗ − w̄ (t∗) . The test were performed for error tolerances
of δ = 10−i, i = 4, 6, 8. The results are plotted in Figures 1 − 3. In these and all
subsequent figures, discrete values are joined by straight lines for clarity, and the
line type changes from solid to dotted to dashed/dotted as the tolerance decreases.
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Figure 2: Harmonic oscillator equation.

We see from Figure 1 that the global error to tolerance ratio for y∗ appears to
be converging to a discernible limit function as δ decreases. The TP behaviour of
f (t∗, y∗), given in Figure 2, is also reasonably good. For η

′′
I (t∗) , however, the ratio

does not settle down to a limit.

Comparing Figures 2 and 3 we see that the η
′′
I (t∗) ratios seem to correspond to

those for f (t∗, y∗). This is what we would expect from equation (10) and (11); the
nonsmooth term le∗�h∗ in (10) is clearly making its presence felt.

Next, we must consider what happens when the integration is re-started from
the point t∗. This is essentially the same as applying the method to a new initial
value problem, except that the initial value y∗ is not exact, but satisfies (9). It can
be shown that Theorem 1 extends to the case where the initial value has an error
that is asymptotically linear in δ.
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Figure 3: Harmonic oscillator equation.

A more general version of this result is proved in the next section. It follows
that TP is maintained after crossing t∗, and by induction, when a finite number of
discontinuities are encountered.

We illustrate this behaviour using the following problem,

y′′(t) = −y(t)− 3 sin(2t)− sign(y), y(0) = 0, y′(0) = 3,

that is also used in [31] and involves a discontinuities function

sign(y) =
{

+1 if y ≥ 0
−1 if y < 0 ,

that causes the second derivative of y(t) changes sign. This is a simplified model
of a system with a relay. It has been used (Shampine et al. (1976)) to test how well
codes cope with a lack of smoothness, see [31].

Generally a proper treatment of such a problem would require integrating until
y changes sign locating carefully where this happend, and restarting there with the
new equation corresponding to y of the new sign.

The problem was solved with the RKN algorithm described earlier, and the
range of integration was 0 ≤ t ≤ 6π except that the stepsize selection was altered
so that rather than including the points of discontinuity in the mesh, we crossed
them with stepsizes of o (δ).

This was done in attempt to model the more realistic situation where the dis-
continuities are not known exactly [13], [16]. Figure 4 records the global error to
tolerance ratios at the meshpoints for δ = 10−i, i = 4, 6, 8.

In Figure 5 we present the corresponding picture when the standard stepsize
selection strategy was not changed. In the former case the ratios appear to be
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Figure 4: Model of a system with a relay.
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Figure 5: Model of a system with a relay.

approching a limit, whereas in the latter case the errors are much larger and do not
settle down.

3. ODEs with constant delays

One of the simplest examples of a delay differential equation is given by

y′′(t) = −y (t− 1) , t ≥ 0,(13)
y (t) = 1, y′ (t) = 0, t ∈ [−1, 0] .

One easily realizes that, in general, at the point t = t0 the solution does not join
smoothly the initial function y(t) = φ(t) , and therefore jump discontinuities in y′

and y′′ (t) can occure at any point t∗ ∈ (t0, tend) . This means that this discontinuity
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is propagated in such a way that y(i) (t) is discontinuous at t = i−1, and the solution
on the interval [i, i + 1] is a polynomial of degree i + 1 and this is a discontinuity of
order i + 1 at t = i.

The general problem considered here is a system of ODEs with k constant
delays, which we write as

y′′(t) = F (t, y (t) , y (t− σ1) , · · · , y (t− σk)) ∈ <m, 0 ≤ t ≤ tend,(14)
y (t) = φ (t) , y′ (t) = φ′ (t) , t ∈ [−σk, 0] .

We assume that the delays are ordered so that 0 < σ1 < σ2 < . . . < σk , and
that the initial function, φ (t) , has p + 1 continuous derivatives . As we noted in
the example (13), if φ (t) does not match y (t) smoothly at t = 0, then derivative
discontinuities will be propagated throughout the solution. It can be shown that
y′ (t) and y′′(t) are generally discontinuous at t = 0 and that a discontinuity in
y(k) (t) at t = t∗ leads to a possible discontinuity in y(k+1) (t) at t = t∗ + σj , for
j = 1, 2, · · · , k. For an analysis of the location and order of discontinuities in more
general classes of delay ODEs, see [4], [5], [8], [23], [36], [37].

We assume that F in (14) is a smooth function of each of its arguments, and in
particular that if s (t) is a given function with p + 1 continuous derivatives, then
the standard initial value problem (IVP)

y′′(t) = F (t, y (t) , s (t− σ1) , · · · , s (t− σk)) ,

y (0) = y0, y′ (0) = y′0,

is sufficiently smooth for the expansions (2) and (3) to hold for any initial values y0

and y′0. Now due to the discontinuity propagation in (14), it follows that there exist
a finite number of points

{
t̂i

}m

i=1
such that 0 < t̂1 < t̂2 < · · · < t̂m and y (t) has

p+1 continuous derivatives over each subinterval
(
t̂i, t̂i+1

)
, and also over

(
t̂m,∞)

.

Moreover, the discontinuity points t̂i can be computed a priori. The most
natural approach for solving (14) numerically is to use an interpolation procedure
to approximate the retarded values, y (t− σi) , and then to apply a standard ODE
method to the resulting IVP, see [2], [17], [22], [24] ,[25 − 29] for examples. Here,
we assume that an explicit RKN method is used, with error control and stepsize
selection as described in Section 1, and with a corresponding interpolant. In other
words, we apply the RKN method to the ODE

yq ′′ (t) = F (t, yq (t) , q (t− σ1) , · · · , q (t− σk)) , 0 ≤ t ≤ tend ,(15)
yq (0) = φ (0) , yq ′ (0) = φ′ (0) ,

where q (t) := φ (t) for t ∈ [−σk, 0] , and for t > 0, q (t) denotes either a higher
or lower-order interpolant to the discrete approximation, as described in Section 1.
The superscript q emphasises that yq depends upon q, and therefore upon the error
tolerance δ. Note that since we are concerned with an hn −→ 0 analysis, we may
assume that on a general step from tn to tn+1, the retarded values needed by the
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RKN scheme lie to the left of tn, and hence interpolation rather than extrapolation
can be used . We will suppose that the discontinuity points t̂i are located a priori
and incorporated into the mesh. Our aim is to examine what conditions on the in-
terpolation process are necessary / sufficient to guarantee tolerance proportionality.

We note immediately that the first smooth subinterval will be (0, σ1) and that
on this subinterval we are, in effect, solving the standard IVP

y′′(t) = F (t, y (t) , φ (t− σ1) , · · · , φ (t− σk)) ,(16)
y (0) = φ (0) , y′ (0) = φ′ (0) .

Since this ODE does not depend upon δ, the results mentioned in Section 1 apply
directly, and in particular we conclude that higher-order interpolants will satisfy
(7) over

(
0, t̂1

)
while lower-order interpolants give q (t)− y (t) = O (δ) , but do not

give (7) in general. Now suppose that we re-start at t̂1 = σ1. To proceed with the
analysis we define the local solution over a general step from tn to tn+1 by

zq ′′
n (t) = F (t, zq

n (t) , q (t− σ1) , · · · , q (t− σk)) ,(17)
zq
n (tn) = yn, zq ′

n (tn) = y′n,

and the local error at tn+1 by

leq
n+1 = yn+1 − zq

n (tn+1) .

The corresponding ideal interpolant can then be defined by

ηq

İ
(t) := zq

n (t) +
[
(t− tn)2 − (t− tn) (hn − 2)

] leq
n+1

2hn
, t ∈ [tn, tn+1] .

Our approach is to examine the global error ηq
I (t)−y (t) over

(
t̂1, t̂2

)
by splitting

it into two components, yq (t)−y (t) and ηq
I (t)−yq (t) . First we look at yq (t)−y (t) ,

and show that with higher-order interpolation if we regard yq (t) as an approxima-
tion to y (t) then condition (II) of Theorem 1, and hence also condition (I) , is
satisfied.

Using fy (t, s (t)) to denote F (t, s (t) , y (t− σ1) , · · · , y (t− σk)), for a given
function s (t) , we have

yq ′′ (t)− fy (t, yq (t)) = F (t, yq (t) , q (t− σ1) , · · · , q (t− σk))(18)
−F (t, yq (t) , y (t− σ1) , · · · , y (t− σk)).

Hence

yq ′′ (t)− fy (t, yq (t)) = O(max
i
‖q (t− σi)− y (t− σi)‖).

Since we solved a standard IVP (16) over the first subinterval, and know
that O (maxi ‖q (t− σi)− y (t− σi)‖) = O(δ) for either higher or lower-order in-
terpolants. Using this in (18) it follows from a standard differential inequality,
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see, for example, [17,Theorem 10.2], that ‖yq (t)− y (t)‖ = O (δ) . Further, writing
yq (t) = y (t) + (yq (t)− y (t)) and q (t− σi) = y (t− σi) + [q (t− σi)− y (t− σi)] in
(18) and expanding , we find that

yq ′′ (t)− fy (t, yq (t))

=
k∑

i=1

∂F

∂zi
(t, y (t) , y (t− σ1) , · · · , y (t− σk)) (q (t− σi)− y (t− σi))

+O(max
i
‖q (t− σi)− y (t− σi)‖2)

+O(‖y (t)− yq (t)‖max
i
‖q (t− σi)− y (t− σi)‖)

+O(‖y (t)− yq (t)‖2),
where ∂F�∂zi denotes the partial derivative of F (t, y, z1, z2, · · · , zk) with respect
to zi. It follows that

yq ′′ (t)− fy (t, yq (t))(19)

=
k∑

i=1

∂F

∂zi
(t, y (t) , y (t− σ1) , · · · , y (t− σk)) (q (t− σi)− y (t− σi))

+O(δ2).

Now, with a higher-order interpolant we have

q (t− σi)− y (t− σi) = vi (t) δ + o (δ) ,

where vi (t) := v (t− σi) is continuous and independent of δ, and hence from (19)

yq ′′ (t)− f y (t, yq (t)) = Γ (t) δ + o (δ) ,

where Γ (t) is continuous and independent of δ, and the o (δ) remainder is clearly
continuous. We may thus apply the equivalence result of Theorem 1 to deduce that

(20) yq (t)− y (t) = V (t) δ + R (t) ,

where V (t) is C2 and independent of δ, and R (t) is sectionally C2 with zeroth, first
and second derivative of o (δ) . For the lower-order interpolant, however, we know
that, in general, q (t− σi)− y (t− σi) does not behave linearly (asymptotically) as
a function of δ, and hence (20) does not hold in general. Next we show that the
error control method causes the ideal interpolant ηq

I (t) to give TP relative to the
approximate true solution yq (t) . To do this we generalise Theorem 1 to allow for
the fact that yq (t) depends upon δ.

Theorem 2. Recall that y (t) is the solution to (14), and let yq (t) be the solution
to (15). Suppose η (t) is sectionally C2 approximation to yq (t) and let ε (t) :=
η (t)− yq (t) denote the corresponding error. Suppose that

(21) ε
(
t̂1

)
= Kδ + o (δ) ,
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where k is a constant vector. Then the following conditions are equivalent

(I) : ε (t) = v (t) δ + r (t) , t ∈ (
t̂1, t̂2

)
,

where v (t) is C
2
and independent of δ,and r (t) is sectionally C2 with zeroth, first

and second derivatives of o (δ).

(II) : η′′(t)− F (t, η (t) , q (t− σ1) , · · · , q (t− σk))
= γ (t) δ + s (t) , t ∈ (

t̂1, t̂2
)
,

where γ (t) is continuous and independent of δ and s (t) is sectionally continuous
and o (δ) .

Proof. The proof is based on the proof of [1,Theorem 3.2.1]. We introduce a third
condition, (III), and then prove that (I) =⇒ (II), (II) =⇒(III), and (III) =⇒ (I).

(III) : ∈′′ (t)− Fy (t, yq (t) , q (t− σ1) , · · · , q (t− σk)) ε (t) = γ (t) δ + u (t) ,

where γ (t) is the function appearing in condition (II), and u (t) is sectionally contin-
uous and o (δ)+O(ε (t)2). Here Fy (t, y, z1, z2, · · · , zk) denotes the partial derivative
of F (t, y, z1, z2, · · · , zk) with respect to y.

(I) =⇒ (II) : writing η (t) = yq (t) + ε (t) we have

η′′(t)− F (t, η (t) , q (t− σ1) , · · · , q (t− σk))
= ∈′′ (t)− Fy (t, yq (t) , q (t− σ1) , · · · , q (t− σk)) ε (t) + ŵ (t) ,

where ŵ (t) = O(ε (t)2). Hence, since q (t− σi)−y (t− σi) = O (δ) and yq (t)−y (t) =
O (δ) ,

η′′(t)− F (t, η (t) , q (t− σ1) , · · · , q (t− σk))
= ∈′′ (t)− Fy (t, y (t) , y (t− σ1) , · · · , y (t− σk)) ε (t) + w (t) ,

where w (t) = O(ε (t) δ + ε (t)2). Finally, using (I),

η′′(t)− F (t, η (t) , q (t− σ1) , · · · , q (t− σk))
= δ [ v′′(t)− Fy (t, y (t) , y (t− σ1) , · · · , y (t− σk)) v (t)]

+r′′(t)− Fy (t, y (t) , y (t− σ1) , · · · , y (t− σk)) r (t) + w (t) ,

which has the required form.

(II) =⇒(III) : This follows as in the proof of [1, Theorem 3.2.1].

(III) =⇒(I) : Let v (t) denote the unique solution to the linear initial value problem

(22) v′′(t)− Fy (t, y (t) , y (t− σ1) , · · · , y (t− σk)) v (t) = γ (t) ,

where v
(
t̂1

)
= K, v′

(
t̂1

)
= K.
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From (III), we have

(23) ∈′′ (t)− Fy (t, y (t) , y (t− σ1) , · · · , y (t− σk)) ε (t) = γ (t) δ + ū (t) ,

where ū (t) is sectionally continuous and o (δ) + O(ε (t)2). From (22) and (23),
ε (t)− δv (t) satisfies

(ε (t) − δv (t))′′ − Fy (t, y (t) , y (t− σ1) , · · · , y (t− σk)) (ε (t)− δv (t))(24)
= ū (t) ,

where ε
(
t̂1

) − δv
(
t̂1

)
= K, and ε′

(
t̂1

) − δv′
(
t̂1

)
= K. If we put W (t) = ε (t) − δ

v (t) in (24) we get

(25) W ′′(t)− Fy (t, y (t) , y (t− σ1) , · · · , y (t− σk)) W (t) = ū (t) ,

where W
(
t̂1

)
= K, W ′(t̂1) = K.

To solve equation (25) we reduce it to a system of two first order equations by
putting

W ′ (t) = Z (t)
Z ′ (t) = Fy (t, y (t) , y (t− σ1) , · · · , y (t− σk)) W (t) + ū (t)

where W
(
t̂1

)
= K, and Z

(
t̂1

)
= K. This gives x′ (t) = A (t) x (t) + H (t) and

x
(
t̂1

)
= [W

(
t̂1

)
, Z

(
t̂1

)
]T , where

x (t) = [W (t) , Z (t)]T , A (t) =
[

0 1
Fy (t, y (t) , y (t− σ1) , · · · , y (t− σk)) 0

]

and H (t) = [0, ū (t)]T .

This initial value problem has a particular solution of the form ([3], 1988)

x (t) = [W (t) , Z (t)]T = X (t)
[
ε
(
t̂1

)− δ v
(
t̂1

)
+

∫ t

t̂1

X −1 (ρ) H (ρ) dρ

]
,

where the fundamental solution matrix X (t) is defined by

X (t) = A (t) X (t) , X
(
t̂1

)
= I.

Note that X (t) is independent of δ, and that ε
(
t̂1

)− δv
(
t̂1

)
= ε

(
t̂1

)− δK = o (δ) .

It follows that ε (t) − δv (t) = r (t) , where r (t) is o (δ) + O(ε (t)2) and continuous,
and r′ (t) is o (δ)+O(ε (t)2) and sectionally continuous and r′′ (t) is o (δ)+O(ε (t)2)
and sectionally continuous leading to the desired result. ¤

Now the approximate problem

yq ′′ (t) = F (t, yq (t) , q (t− σ1) , · · · , q (t− σk)),
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is the one that the RKN method is actually being asked to solve. We would like
to apply the standard ODE analysis in [1] in order to conclude that the error
control causes codition (II) to hold. There is, however, one complication that the
higher or lower-order interpolant q (t) is typically only a C2 function, and hence
the approximate problem is not smooth enough for (2) and (3) to hold. We can
sidestep this difficulty by noting that the RKN process samples F at a discrete set
of points. For each δ, we could replace q (t) by a smoother function that interpolates
q (t) at these discrete points and the numerical solution would remain unchanged.
Hence we may pretend that q (t) is globally Cp + 1. It follows that condition (II) in
Theorem 2 is satisfied, allowing us to deduce the desired result.

Corollary 3. Suppose that we solve (14) over
[
t̂1, t̂2

]
in the manner described

above, using either a higher or lower-order interpolant. Then, provided that given
y (t) for t ≤ t̂1, ‖ψ (t, y (t))‖ 6= 0 over

[
t̂1, t̂2

]
in (3), the ideal interpolant satisfies

(26) ηq
I (t)− yq (t) = V̂ (t) δ + R̂ (t) ,

where V̂ (t) is continuous and independent of δ, V̂ (t) ∈ C2
(
t̂1, t̂2

)
, and R̂ (t) is

sectionally C2 with zeroth, first and second derivatives of o (δ). When a higher-
order interpolant is used we may thus combine (20) and (25) to give

(27) ηq
I (t)− y (t) = V̄ (t) δ + R̄ (t) ,

where V̄ (t) is continuous and independent of δ, V̄ (t) ∈ C2
(
t̂1, t̂2

)
, and R̄ (t) is

sectionally C2 with zeroth, first and second derivatives of o (δ). On the other hand,
with a lower-order interpolant we see that since (20) does not hold, in general the
leading term in ηq

I (t) − y (t) will not be linear. Now on a general step from tn to
tn+1 in the integration over

[
t̂1, t̂2

]
we have ηq

I (t) − zq
n (t) = O

(
hp+1

n

)
and, for a

higher-order interpolant, q (t)− zq
n (t) = O

(
hp+1

n

)
. Hence q (t)− ηq

I (t) = O
(
hp+1

n

)
,

so that q (t)− ηq
I (t) = o (δ) and, using (26),

(28) q (t)− y (t) = V̄ (t) δ + o (δ) .

This shows that a higher-order interpolant maintains TP in the y (t) approximation
across

[
t̂1, t̂2

]
. By induction, (26) and (27) remain true when a finite number of

smooth subintervals are crossed. The induction is valid provided that the tail of
backvalues never crosses into the current subinterval; that is, t̂i+1 − t̂i ≤ σ1. There
are two cases where this condition does not hold. First, if the coupling in (14) is
weak, we may be able to take smooth subintervals with width bigger than σ1. Second,
the integration may proceed into the final smooth region

(
t̂m,∞)

. We will show how
to deal with the second case. The first case can be handled similarly. Given any
fixed point t > t̂m, let tN1 be the furthermost meshpoint such that tN1 − t̂m ≤ σ1,
and in general let tNr be the furthermost meshpoint such that tNr − t̂Nr −1 ≤ σ1. In
this manner the range

[
t̂m, t

]
can be divided into a finite number of subintervals of

width (≤ σ1). Now we can inductively obtain (26) and (27) over each subinterval,
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so that eventually

(29) q (t)− y (t) = V̄ (t) δ + o (δ) ,

at the given point t.

To verify the analysis, we implemented a four-stage RKN formula-pair,
RKN(3,4), consisting of a third and a fourth-order formula [11] in extrapolated
error -per-step mode, so that p = 4. Two alternatives were used for the interpolant
q(t). First, we used the 3rd and 4th order RKN formulas as well interpolation by
degenerate cubic splines to construct a locally fourth-order interpolant. In this case
the local order of q(t) is l = 4 = p, and the interpolant is of lower-order. The
resulting method will be denoted P4L4. Second, we used the 3rd and 4th order
RKN formulas with interpolation of fourth degree to construct a locally fifth-order
interpolant [19], [20], [30]. In this case the local order of q(t) is l = 5 = p + 1,
and the interpolant is of higher-order. This method will be denoted P4L5. we
also implemented a p = 5, l = 6 method, which refer to as P5L6, consisting of
the fourth-and fifth-order RKN pair from [32], in extrapolated error-per-step mode,
along with the quintic Hermite interpolant. We mention that the p = 5, l = 6
combination has proved to be a popular choice [22], [24].

The algorithms were tested on the delayed harmonic oscillator equation

y′′(t) = −y(t− 1), t ≥ 0,

y(t) = 1, y′(t) = 0, t ∈ [−1, 0].

The global error to tolerance behaviour of the three methods for δ = 10−i, i = 4, 6, 8
is plotted in Figures 6− 8.
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Figure 6: Delay harmonic oscillator equation P4L4 method
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Here the global error in q (t) was computed at 101 equally spaced points in
the range [0, 20]. The numerical solution with δ = 10−10 was taken to be the true
solution in each case. For P4L4 method, in Figure 6, the global error ratios do
not seem to converge to a limit. We see in Figure 7 that the global error ratios
for the P4L5 method behave smoothly and appear to approach a limit function.
This illustrates the potential difference in behaviour between higher and lower-order
interpolants that our analysis predicted.
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Figure 7: Delay harmonic oscillator equation P4L5 method
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Figure 8: Delay harmonic oscillator equation P5L6 method

The P5L6 method in Figure 8 also exhibits nonlinear variation of global error
ratios. Here, all the three methods displayed good tolerance proportionality. Some
authors in [6] investigated higher and lower-order interpolation in a slightly different
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context and also found that higher-order interpolants give significant advantages.

4. Conclusion

The global error will not have regular behaviour unless an appropriate stepsize
selection formula and standard error control policy are used. Under these circum-
stances a linear relationship of TP may exist between the global error and the local
error tolerance, δ. The main conclusion of this work is that when a pth-order RKN
formula is used to solve a constant delay system of ODEs, higher-order (locally
O

(
hp+1

n

)
) interpolation is necessary and sufficient to guarantee asymptotic TP. It

is perhaps surprising therefore, that several of the algorithms that have been put
forward in the literature use lower-order (locally O

(
hP

n

)
) interpolants (see, for ex-

ample, [19], [22], [24]).With a fixed stepsize and lower-order interpolant, Oppelstrup
[26] and Roth [29] state that the global error behaves like O (hp), that is, of course,
the best order that can be achieved. For the variable stepsize case analysed here,
this corresponds to the fact that lower-order interpolants allow the global error to
be bounded linearly with δ. To convert the bound into an equality, higher-order
interpolation must be performed.

References

[1] K. Abdul Hadi A., The Behaviour of the Global Error in the Numerical Solution
of Ordinary and Integro-Differential Equations. Ph.D. Thesis, University of Dundee,
1997.

[2] H. Arndt, Numerical solution of retarded initial value problems with local and global
error and stepsize control, Numer. Math., 43(1984), 343-360.

[3] U. M. Ascher, R. M. M. Mattheij and R. D. Russell, Numerical Solution of Boundary
Value Problems for Ordinary Differential Equations (Prentice-Hall, Englewood Cliffs,
NJ, 1988).

[4] A. Bellen, A Runge-Kutta-Nyström method for Delay Differential Equations, Progress
in Scientific Computing, Vol.5, Numerical Boundary Value ODEs, 1985, 271-283.

[5] A. Bellen, One step collocation for delay differential equations, J. Comp. Appl. Math.,
10(1984), 275-283.

[6] A. Bellen and M. Zennaro,Numerical solution of delay differential equations by uni-
form corrections to an implicit Runge-Kutta method, Numer. Math., 47(1985), 301-
316.

[7] J. R. Cash, A block 6(4) Runge-Kutta formula for nonstiff initial value problems,
ACM Trans. Math. Software, 15(1989), 15-28.

[8] P. Chocholaty and L. Slahor, A method to boundary value problems for delay equa-
tions, Numer. Math., 33(1979), 69-75.

[9] J. R. Dormand and P. J. Prince, A family of embedded Runge-Kutta formulae, J.
Comput. Math., 6(1980), 19-26.



Error control policy for initial value problems with discontinuities and delays 683

[10] J. R. Dormand and P. J. Prince, Runge-Kutta- Nyström triples, Comput. Math. Appl.,
12-13(1987), 937-949.

[11] J. R. Dormand, M. E. A. El-Mikkawy, and P. J. Prince, Families of embedded Runge-
Kutta-Nyström formulae, IMA J. Numer. Anal., 7(1987), 235-250.

[12] W. H. Enrigh, K. R. Jackson, S. P. Nørsett and P. G. Thomsen, Interpolants for
Runge-Kutta formulas, ACM Trans. Math. Software, 12(1986), 193-218.

[13] W. H. Enrigh, K. R. Jackson, S. P. Nørsett and P. G. Thomsen, Effective solution of
discontinuous IVPs using a Runge-Kutta formula pair with interpolants, Appl. Math.
Comput., 27(1988), 313-335.

[14] W. H. Enrigh and J. D. Pryce, Tow FORTRAN packages for assessing initial value
method, ACM Trans. Math. Software, 13(1987), 1-27.

[15] J. M. Fine, A Low Order Runge-Kutta-Nyström Methods with Interpolations, Tech.
Report 183/85, University of Toronto, Canada, 1985.

[16] C. W. Gear and O. Østerby, Solving ordinary differential equations with discontinu-
ities, ACM Trans. Math. Software, 10(1984), 23-44.

[17] E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations I
(Springer, Berlin, 1987).

[18] M. K. Horn, Developments in High Order Runge-Kutta-Nyström Formulas, Disser-
tation, Texas University, Austin, Texas, 1977.

[19] A. V. Kim and V. G. Pimenov, Numerical methods for time-delay systems on the basis
of i-smooth analysis, Proceedings of the 15th World Congress on Scientific Computa-
tion, Modelling and Applied Mathematics, Vol.1 : Computational Mathematics, pp.
193-196, 1997.

[20] A. V. Kim and V. G. Pimenov, Numerical methods for delay differential equations.
Application of i-smooth calculus. (Lecture Notes in Mathematics, Vol. 44). Research
Institute of Mathematics- Global Analysis Research Center. Seoul National Univer-
sity, 1999.

[21] A. Marthinsen. Continuous Extensions to Nyström methods for the explicit solu-
tion of second order initial value problems. Technical report, Norwegian institute of
Technology, Division of Mathematical Sciences, 1994.

[22] K. W. Neves, Automatic integration of functional differential equations: an approach,
ACM Trans. Math. Software, 7(1981), 421-444.

[23] K. W. Neves and A. Feldstein, Characterization of jump discontinuities for state
dependent delay differential equations, J. Math. Anal. Appl., 56(1976), 689-707.

[24] K. W. Neves, Control of interpolatory error in retarded differential equations, ACM
Trans. Math. Software, 1(1975), 357-368.

[25] H. J. Oberle and H. J. Pesch,Numerical treatment of delay differential equations by
Hermite interpolation, Numer. Math., 37(1981), 235-255.

[26] J. Oppelstrup, The RKFHB4 method for delay differential equations in: R. Burlisch,
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