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NUMERICAL METHOD FOR A 2NTH-ORDER BOUNDARY

VALUE PROBLEM

Chenmei Xu, Shuai Jian, and Bo Wang

Abstract. In this paper, a finite difference scheme for a two-point boun-
dary value problem of 2nth-order ordinary differential equations is pre-
sented. The convergence and uniqueness of the solution for the scheme
are proved by means of theories on matrix eigenvalues and norm. Nu-
merical examples show that our method is very simple and effective, and
that this method can be used effectively for other types of boundary value
problems.

1. Introduction

Assume that a 2nth-order (n ≥ 2) two-point boundary valve problem (BVP)
is given in the form







y(2n) = f(x)y + g(x), 0 < x < 1,

y(2α)(0) = aα, α = 0, 1, . . . , n− 1,

y(2α)(1) = bα,

(1.1)

where f(x) and g(x) are continuous functions on the closed interval [0, 1] and
aα, bα are all real constants. The problem (1.1) frequently occurs in structural
engineering, astrophysics and other branches of physical sciences. The problem
(1.1) has a unique analytic solution for a fixed positive integer n ≥ 2 under the
general condition [5]

f(x) 6= (−1)nj2nπ2n, j = 1, 2, . . . , x ∈ [0, 1].(1.2)

In general, the analytic solution of the system (1.1) under the condition
(1.2) cannot be obtained, and the numerical methods are required. Some finite
difference methods [2, 6, 9] of orders O(h2), O(h4) and O(h6) were derived
under the condition −36 ≤ f(x) ≤ 0, x ∈ [0, 1] for n = 2. Then some O(h2)
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and O(h
3

2 ) methods [7, 8, 10] were obtained for n = 2 under the hypotheses

f(x) ≤ 0, x ∈ [0, 1] and |f(x)| ≤ π4, x ∈ [0, 1], respectively. Later, an O(h
3

2 )
method [11] for n = 2 was obtained under the condition f(x) 6= j4π4, j =
1, 2, . . . , x ∈ [0, 1]. Other methods [1, 3, 4, 12, 13] were introduced recently.
However, the numerical methods for the problem (1.1) under the condition
(1.2) has not yet been studied.

The main purpose of this paper is to set up a finite difference scheme for the
BVP (1.1)(n ≥ 2) and discuss its convergence and uniqueness of the solution
for the scheme under the condition (1.2). Also, a more general domain [a, b]
can be transformed into the standard domain [0, 1] through a straightforward
substitution x = t−a

b−a
. Thus the problem and condition discussed in this pa-

per are quite general. This scheme is very simple to implement and efficient.
Besides, the method can be applied to the study of some nonlinear problems,
which arise frequently in many areas of engineering.

This paper is organized as follows. In Section 2, we introduce a finite differ-
ence scheme for the BVP (1.1). In Section 3, we analyze the convergence and
uniqueness of the solution for the scheme under the condition (1.2) by using
theories on eigenvalues and norm. In Section 4, the convergence of our method
is illustrated by some numerical examples.

2. Finite difference scheme

Let N be a positive integer and N ≥ 2n. Divide the interval [0, 1] into N+1
parts. Then the mesh step size is h = 1

N+1 and the mesh points are xi = ih for

i = 0, 1, . . . , N +1. For simplicity, we denote that yi = y(xi), fi = f(xi), gi =
g(xi).

By means of the Taylor’s formula, we obtain










−2y1 + y2 = h2y′′1 − y0 + t1,

yi−1 − 2yi + yi+1 = h2y′′i + ti, i = 2, 3, . . . , N − 1,

yN−1 − 2yN = h2y′′N − yN+1 + tN ,

(2.1)

where the truncation errors are

ti =
2

4!
h4y(4)(x̄i), xi−1 < x̄i < xi+1, i = 1, 2, . . . , N.

By (2.1), the discrete form of the BVP (1.1) for n = 1 can be expressed as










−2y1 + y2 = h2f1y1 + h2g1 − y0 + t1,

yi−1 − 2yi + yi+1 = h2fiyi + h2gi + ti, i = 2, 3, . . . , N − 1,

yN−1 − 2yN = h2fNyN + h2gN+1 − yN+1 + tN .

(2.2)

The equation (2.2) can be written in the matrix form

PY = h2DY + C1 + T1,(2.3)
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where

P =















−2 1 0 · · · 0 0 0
1 −2 1 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · 1 −2 1
0 0 0 · · · 0 1 −2















is a tri-diagonal matrix of order N , Y = (y1, y2, . . . , yN )T , D = diag(f1, f2,
. . . , fN), T1 = (ti) = (O(h4)), and C1 = (ci) = (g1h

2 − a0, g2h
2, . . . , gN−1h

2,
gNh2 − b0)

T .
Similarly, based on the Taylor’s formula, we have the relationships at xi

y′′i−1 − 2y′′i + y′′i+1 = h2y
(4)
i +

2

4!
h4y(6)(x̄i1), xi−1 < x̄i1 < xi+1(2.4)

and

y
(4)
i−1 − 2y

(4)
i + y

(4)
i+1 = h2y(6)(x̄i2), xi−1 < x̄i2 < xi+1.(2.5)

Suppose that the value of the sixth derivative y(6)(x) on the interval [xi−2,
xi+2] does not change too rapidly. From (2.4) and (2.5), we can find a value x̄i

that lies in [xi−2, xi+2] so that

yi−2 − 4yi−1 + 6yi − 4yi+1 + yi+2 = h4y
(4)
i +

1

6
h6y(6)(x̄i),(2.6)

xi−2 < x̄i < xi+2, i = 2, 3, . . . , N − 1.

By (2.6), we have the relationships






















5y1 − 4y2 + y3 = 2y0 − h2y′′0 + h4(− 1

12
y
(4)
0 + y

(4)
1 ) + t1,

yi−2 − 4yi−1 + 6yi − 4yi+1 + yi+2 = h4y
(4)
i + ti, i = 2, 3, . . . , N − 1,

yN−2 − 4yN−1 + 5yN = 2yN+1 − h2y′′N+1 + h4(y
(4)
N − 1

12
y
(4)
N+1) + tN ,

(2.7)

where the truncation errors are

t1 =
59

360
h6y(6)(x̄1), x0 < x̄1 < x3,

ti =
1

6
h6y(6)(x̄i), xi−2 < x̄i < xi+2, i = 2, 3, . . . , N − 1,(2.8)

tN =
59

360
h6y(6)(x̄N ), xN−2 < x̄N < xN+1.

From (2.7), we see that the discrete form of the BVP (1.1) for n = 2 is























5y1 − 4y2 + y3 = 2y0 − h2y′′0 + h4(− 1

12
y
(4)
0 + f1y1 + g1) + t1,

yi−2 − 4yi−1 + 6yi − 4yi+1 + yi+2 = h4(fiyi + gi) + ti, i = 2, 3, . . . , N − 1,

yN−2 − 4yN−1 + 5yN =2yN+1 − h2y′′N+1 + h4(fNyN + gN − 1

12
y
(4)
N+1) + tN .

(2.9)
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The equation (2.9) can be written in the matrix form

P 2Y = h4DY + C2 + T2,(2.10)

where T2 = (ti) = (O(h6)) from (2.8), and

C2 = (ci) =





















g1h
4 + 2a0 − a1h

2 − 1
12h

4(f0a0 + g0)
g2h

4 − a0
g3h

4

. . .

gN−2h
4

gN−1h
4 − b0

gNh4 + 2b0 − b1h
2 − 1

12h
4(fN+1b0 + gN+1)





















.

Furthermore, the central discrete version of the BVP (1.1) can be given in a
similar way as in (2.3) and (2.10), expressed uniformly by the matrix equation

PnY = h2nDY + Cn + Tn,(2.11)

where Tn = (ti) = (O(h2n+2)) and Cn = (ci) are too complex to present here.
On neglecting the truncation error Tn in (2.11), we arrive at the central

difference scheme for the BVP (1.1)

PnZ = h2nDZ + Cn,(2.12)

where Z = (zi) is the approximate solution of (2.11). The solution of the system
(2.12) can be calculated by the LU decomposition method, where L and U are
a lower triangular and an upper triangular matrices, respectively, or by the
chase method and so on. We shall analyze the convergence and uniqueness of
the scheme (2.12) under the condition (1.2) in the next section.

3. Convergence analysis

3.1. Some useful conclusions

If the matrix Pn − h2nD is invertible, then the total truncation error of the
scheme (2.12) is

E = (ei) = (y(xi)− zi) = Y − Z = (Pn − h2nD)−1Tn.(3.1)

Lemma 3.1 ([13]). The eigenvalues of the tri-diagonal matrix P introduced in

Section 2 are −4 sin2( lπh2 ) for l = 1, 2, . . . , N .

Lemma 3.2. Let A be a real symmetric matrix of Nth-order. If there exists

a > 0 such that ‖Aη‖ ≥ a‖η‖ for any vector η ∈ RN , then A is invertible and

‖A−1η‖ ≤ 1
a
‖η‖.

Proof. Denote the eigenvalues of A by λ1, λ2, . . . , λN and the corresponding
eigenvectors by ξ1, ξ2, . . . , ξN . Then

|λl|‖ξl‖ = ‖λlξl‖ = ‖Aξl‖ ≥ a‖ξl‖, l = 1, 2, . . . , N.
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Thus |λl| ≥ a, which means that all of the eigenvalues λl are nonzero and A is
invertible consequently.

For the eigenvalues λ−1
l of A−1, we have 0 < |λ−1

l | ≤ 1
a
. Denoting by ρ(A−1)

the spectral radius of A−1, it yields in view of the symmetry of A−1 that [14]
‖A−1‖ = ρ(A−1) ≤ 1

a
. Hence, for any vector η ∈ RN , it holds that

‖A−1η‖ ≤ ‖A−1‖‖η‖ ≤ 1

a
‖η‖.

�

3.2. Convergence analysis

Now we will discuss convergence of the above finite difference scheme (2.12).
For the sake of simplicity, we will only consider the case when n is odd. The
even case can be treated analogously. Now the condition (1.2) can be written
as

f(x) 6= −j2nπ2n, j = 1, 2, . . . , x ∈ [0, 1].

Based on Lemma 3.1, the eigenvalues of Pn are

λl = −4n sin2n(
lπh

2
), l = 1, 2, . . . , N.(3.2)

Inserting (3.2) into the well-known inequality

t− t3

6
≤ sin t ≤ t, t ∈ (0,

π

2
),(3.3)

we establish the estimate for the eigenvalues of Pn

−l2nπ2nh2n ≤ λl ≤ −l2nπ2nh2n(1− l2π2h2

24
)2n, l = 1, 2, . . . , N.(3.4)

Set p = inf
x∈[0,1]

f(x) and q = sup
x∈[0,1]

f(x). Then the condition (1.2) can be

considered into two cases by the continuity of f(x) on the interval [0,1]: either

p > −π2n,(3.5)

or there exists an integer k ≥ 1 such that

−(k + 1)2nπ2n < p ≤ q < −k2nπ2n.(3.6)

Since Pn is a real symmetric matrix, we can choose an orthogonal matrix T

of Nth-order such that

T ′PnT = diag(λ1, λ2, . . . , λN ).

For any vector U = (uj) ∈ RN and Ũ = (ũj) = T ′U , according to the concept
of inner product in RN and (3.2), we have

(U, (Pn − h2nD)U) = Ũ ′diag(λ1, λ2, . . . , λN )Ũ − U ′h2nDU

≤ (λ1 − ph2n)(U,U).

From (3.4), it follows that

(U, (Pn − h2nD)U) ≤ −h2n[π2n(1 − π2h2

24
)2n + p](U,U).
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(1) Suppose that f(x) satisfies (3.5). In view of (3.5), when the step h

satisfies

h ≤ h1 =
2
√
6

π
[1− (

1

2
− p

2π2n
)

1

2n ]
1

2 ,(3.7)

it holds that |(U, (Pn − h2nD)U)| ≥ h2n

2 (p + π2n)(U,U). Then from ‖U‖2 =
(U,U) and Cauchy-Schwartz inequality, we obtain

‖U‖‖(Pn − h2nD)U‖ ≥ h2n

2
(p+ π2n)‖U‖2.

Furthermore, we have the result

‖(Pn − h2nD)U‖ ≥ h2n

2
(p+ π2n)‖U‖.(3.8)

Obviously, the matrix Pn − h2nD is real symmetric. So by using Lemma 3.2
and (3.8), we obtain that the matrix Pn − h2nD is invertible and

‖(Pn − h2nD)−1U‖ ≤ 2

h2n(p+ π2n)
‖U‖.(3.9)

(2) Suppose that f(x) satisfies (3.6). Without loss of generality, letN ≥ k+1
and set m = 1

2 (p+ q). Then we derive

‖(Pn − h2nD)U‖ ≥ ‖(Pn − h2nmI)U‖ − ‖(h2nmI − h2nD)U‖

≥ ‖U‖h2n( min
1≤i≤N

| λi

h2n
−m| − max

1≤i≤N
|m− fi|).(3.10)

For the last term in the bracket of (3.10), it clearly holds that

max
1≤i≤N

|m− fi| ≤
q − p

2
.(3.11)

For | λi

h2n −m| in the bracket of (3.10), when the step h satisfies

h ≤ h2 =
2
√
6

(k + 1)π
{1− [

1

2
− p

2(k + 1)2nπ2n
]

1

2n } 1

2 ,(3.12)

we have

(k + 1)2nπ2n[1− (k + 1)2π2h2

24
]2n +m ≥ (k + 1)2nπ2n + q

2
> 0.(3.13)

Furthermore, in view of (3.2), (3.4), (3.6) and (3.13), it is easily checked that

{

m− λi
h2n ≥ m+ (k + 1)2nπ2n[1− (k+1)2π2h2

24 ]2n > 0, N ≥ i ≥ k + 1.
−m+ λi

h2n ≥ −m− k2nπ2n > 0, k ≥ i ≥ 1.

(3.14)

Therefore, from (3.14), the estimate can be given in the form

min
1≤i≤N

| λi

h2n
−m|(3.15)
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≥ min{−m− k2nπ2n,m+ (k + 1)2nπ2n[1− (k + 1)2π2h2

24
]2n}.

Substituting (3.11) and (3.15) into (3.10), we see that

‖(Pn − h2nD)U‖ ≥ ‖U‖h2nmin{−q − k2nπ2n,
(k + 1)2nπ2n + p

2
}(3.16)

= h2nd‖U‖,

where d = min{−q − k2nπ2n,
(k+1)2nπ2n+p

2 }.
Similarly, based on Lemma 3.2 and (3.16), it is easily checked that the matrix

Pn − h2nD is invertible and

‖(Pn − h2nD)−1U‖ ≤ 1

h2nd
‖U‖.(3.17)

In summary, we can state the convergence conclusion of the scheme (2.12)
when n is odd as follows.

According to the condition (1.2), when the step size h satisfies (3.7) and
(3.12), the matrix Pn−h2nD is invertible, that is, (2.12) has a unique solution

Z = (zj) = (Pn − h2nD)−1Cn.

Then using (3.1), (3.9) and (3.17), we arrive at the estimate for the total
truncation error E = (ej) of the scheme (2.12)

‖E‖ = ‖Y − Z‖ = ‖(Pn − h2nD)−1Tn‖ ≤ Mh−2n‖Tn‖,
where M = 2

p+π2n or M = 1
d
is a constant depending only on f(x). Also,

‖Tn‖ = (

N
∑

j=1

t2j)
1

2 ≤ N
1

2 max
1≤j≤N

|tj | ≤ h− 1

2 max
1≤i≤N

|ti|,

so

max
1≤i≤N

|ei| ≤ Mh−2nh− 1

2 max
1≤i≤N

|ti| = Mh−2nh− 1

2O(h2n+2) = O(h
3

2 ).(3.18)

It is seen that max
1≤i≤N

|ei| → 0 as h → 0, which implies that the numerical

solution obtained from the scheme (2.12) converges to the exact solution of the

BVP (1.1) and the total truncation error is O(h
3

2 ).

Theorem. Suppose that y(x) is the unique solution of the BVP (1.1) (n ≥ 2)
under the condition (1.2) which is smooth sufficiently, the high-level derivative

value does not change too rapidly, and the step size h satisfies

h ≤ min{h1, h2},
where h1 and h2 satisfy (3.7) and (3.12), respectively. Then the scheme (2.12)
has a unique solution Z = (zi) and its total truncation error is

max
1≤i≤N

|y(xi)− zi| ≤ O(h
3

2 ).
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4. Numerical examples

To illustrate the convergence and efficiency of the above scheme derived, we
consider the following examples.

Example 1. Assume that a sixth-order two-point BVP is given in the form














y(6)(x) = f(x)y + g(x), 0 < x < 1,

y(0) = 1, y′′(0) = −1, y(4)(0) = −3,

y(1) = 0, y′′(1) = −2e, y(4)(1) = −4e,

where f(x) = 1, g(x) = −6ex. The exact solution of this problem is y =
(1− x)ex.

Since p = inf
x∈[0,1]

f(x) = 1 > −π6, from (3.7) of case (1), the step size h

should satisfy

h ≤ h1 =
2
√
6

π
[1− (

1

2
− 1

2π6
)

1

6 ]
1

2 = 0.51543984701666.

Table 1 gives the comparison of the numerical solution with the exact solu-
tion.

Table 1. Comparison of the numerical solution with the exact solution
point xi numerical solution zi exact solution y(xi) error |y(xi)− zi|

0.0 1.00000000000000 1.00000000000000 0.000000000000000×10−5

0.1 0.99464075267847 0.99465382626808 1.307358961477600×10−5

0.2 0.97709732000550 0.97712220652814 2.488652263521463×10−5

0.3 0.94486686464972 0.94490116530320 3.430065348353217×10−5

0.4 0.89505441449065 0.89509481858476 4.040409410799306×10−5

0.5 0.82431804237927 0.82436063535006 4.259297079500790×10−5

0.6 0.72880689161249 0.72884752015620 4.062854371267299×10−5

0.7 0.60409114551398 0.60412581224114 3.466672716367913×10−5

0.8 0.44508292900531 0.44510818569849 2.525669318031998×10−5

0.9 0.24594700627127 0.24596031111569 1.330484442585433×10−5

1.0 0.00000000000000 0.00000000000000 0.000000000000000×10−5

From Table 1, it is clear that the error is considerately small. Inserting
max
1≤i≤9

|y(xi)− zi| = 4.259297079500790× 10−5 into the error estimate (3.18), it

should hold that

max
1≤i≤9

|y(xi)− zi| ≤ Mh−6h− 1

2 max
1≤i≤9

|ti|

≤ 2

π6 + 1
× 1

4
× 8e× 0.1

3

2 = 3.572759111412481× 10−4.

Obviously, the above inequality is correct, which means that the numerical
results agree with the theoretical analysis.

The following Table 2 is a comparison of the numerical and theoretical errors
for the method introduced in Section 2 under different steps. It shows that the
numerical errors agree with the theoretical analysis.
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Table 2. Comparison of the numerical and theoretical errors

step h = 1
N+1 error max

1≤i≤N
|ei| O(h

3

2 )

N = 9 4.259297079500790 ×10−5 3.572759111412481×10−4

N = 19 1.055905343294583×10−5 1.263161097612895×10−4

N = 29 4.685389965231046×10−6 6.875778115745614×10−5

N = 39 2.626835689412133×10−6 4.465948889265601×10−5

N = 59 1.186940417285953×10−6 2.430954665788893×10−5

N = 79 8.633112595912706×10−7 1.578951372016118×10−5

The following Table 3 exhibits the exact solution and the error estimates ob-
tained by using the Adomian’s decomposition method (ADM) [12], the homo-
topy perturbation method (HPM) [3], the variational iteration method (VIM)
[4], and the finite difference method (FDM) introduced in this paper. It shows
that the method obtained in this paper is very effective.

Table 3. Error estimates under different numerical methods
xi exact y(xi) error to ADM error to HPM error to VIM error to FDM
0.0 1.00000000 0.00000000 0.00000000 0.00000000 0.00000000×10−5

0.1 0.99465383 0.00040933 0.00040933 0.00040933 1.30735896×10−5

0.2 0.97712221 0.00077820 0.00077820 0.00077820 2.48865226×10−5

0.3 0.94490117 0.00107048 0.00107048 0.00107048 3.43006535×10−5

0.4 0.89509482 0.00125787 0.00125787 0.00125787 4.04040941×10−5

0.5 0.82436064 0.00132238 0.00132238 0.00132238 4.25929708×10−5

0.6 0.72884752 0.00125787 0.00125787 0.00125787 4.06285437×10−5

0.7 0.60412581 0.00107048 0.00107048 0.00107048 3.46667272×10−5

0.8 0.44510819 0.00077820 0.00077820 0.00077820 2.52566932×10−5

0.9 0.24596031 0.00040933 0.00040933 0.00040933 1.33048444×10−5

1.0 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000×10−5

Example 2. Assume that the sixth-order two-point BVP is given in the form















y(6)(x) = f(x)y + g(x), 0 < x < 1,

y(0) = 2, y′′(0) = 0, y(4)(0) = −2,

y(1) = e, y′′(1) = −e, y(4)(1) = −3e,

where f(x) = −e−x, g(x) = −(4 + x)ex + (2 − x). The exact solution of this
problem is y = (2− x)ex.

Since p = inf
x∈[0,1]

f(x) = 1 > −π6, from (3.7) of case (1), the step size h

should satisfy

h ≤ h1 =
2
√
6

π
[1− (

1

2
− −1

2π6
)

1

6 ]
1

2 = 0.5147106938533479.

Table 4 gives the comparison of the numerical solution with the exact solu-
tion.
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Table 4. Comparison of the numerical solution with the exact solution
point xi numerical solution zi exact solution y(xi) error |y(xi)− zi|

0.0 2.000000000000000 2.000000000000000 0.000000000000000×10−5

0.1 2.099813385084812 2.099824744343731 1.135925891881939×10−5

0.2 2.198503341066027 2.198524964688306 2.162362227853265×10−5

0.3 2.294730168484334 2.294759972879205 2.980439487121345×10−5

0.4 2.386884407089619 2.386919516226033 3.510913641413538×10−5

0.5 2.473044893309774 2.473081906050192 3.701274041834068×10−5

0.6 2.550931013348714 2.550966320546712 3.530719799860194×10−5

0.7 2.617848392279256 2.617878519711620 3.012743236352478×10−5

0.8 2.670627163912752 2.670649114190961 2.195027820883766×10−5

0.9 2.705551858941608 2.705563422272645 1.156333103669027×10−5

1.0 2.718281828459046 2.718281828459046 0.000000000000000×10−5

Example 3. Assume that the sixth-order two-point BVP is given in the form















y(6)(x) = f(x)y + g(x), 0 < x < 1,

y(0) = 2, y′′(0) = 0, y(4)(0) = −2,

y(1) = e, y′′(1) = −e, y(4)(1) = −3e,

where f(x) = −3π6e−x, g(x) = −(4+ x)ex +3π6(2− x). The exact solution of
this problem is y = (2− x)ex.

Since p = inf
x∈[0,1]

f(x) = −3π6, q = sup
x∈[0,1]

f(x) = −3π6e−1, from (3.12) (here,

k = 1) of case (2), the step h should satisfy

h ≤ h2 =
2
√
6

2π
[1− (

1

2
− −3π6

27π6
)

1

6 ]
1

2 = 0.2493485811548127.

Table 5 gives the comparison of the numerical solution with the exact solu-
tion.

Table 5. Comparison of the numerical solution with the exact solution
point xi numerical solution zi exact solution y(xi) error |y(xi)− zi|

0.0 2.000000000000000 2.000000000000000 0.000000000000000×10−5

0.1 2.099837696498217 2.099824744343731 1.295215448671172 ×10−5

0.2 2.198549540308409 2.198524964688306 2.457562010338421 ×10−5

0.3 2.294793663811664 2.294759972879205 3.369093245852994 ×10−5

0.4 2.386958915636375 2.386919516226033 3.939941034181160 ×10−5

0.5 2.473123081690814 2.473081906050192 4.117564062200430 ×10−5

0.6 2.551005229817315 2.550966320546712 3.890927060279381 ×10−5

0.7 2.617911414246287 2.617878519711620 3.289453466726044 ×10−5

0.8 2.670672888774492 2.670649114190961 2.377458353031159 ×10−5

0.9 2.705575876608723 2.705563422272645 1.245433607754976 ×10−5

1.0 2.718281828459046 2.718281828459046 0.000000000000000×10−5
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