• Title/Summary/Keyword: Optimization process

Search Result 4,762, Processing Time 0.038 seconds

Optimization of Onion Oil Microencapsulation by Response Surface Methodology (반응표면분석법에 의한 양파유 미세캡슐화 공정의 최적화)

  • Hong, Eun-Mi;Yu, Mun-Gun;Noh, Bong-Soo;Chang, Pahn-Shick
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.437-443
    • /
    • 2002
  • Using agar and gelatin as wall materials, onion oil was microencapsulated using the extrusion spraying technology. A sensitive methodology was developed for quantitative determination of the microencapsulation yield through ethyl acetate extraction and gas chromatographic analyses. Optimal conditions for the microencapsulation process consisting of the ratio of [core material, Cm] to [wall material, Wm] ($X_1$), temperature of dispersion fluid ($X_2$), detergent concentration in dispersion fluid ($X_3$), and concentration of emulsifier $(X_4)$ were determined using response surface methodology. The regression model equation for the yield of microencapsulation (Y, %) of onion oil could be predicted as $Y\;=\;97.028571-0.775000\;(X_1)-0.746726\;(X_1){\cdot}(X_1)\;-\;1.100000\;(X_3){\cdot}(X_2)$. The optimal conditions for the microencapsulation of the onion oil were determined as the ratio of [core material] to [wall material] of 4.5 : 5.5 (w/w), the temperature of dispersion fluid of $17.1^{\circ}C$ detergent concentration in dispersion fluid of 0.03%, and the concentration of emulsifier of 0.42%. Results revealed the most stable microcapsule of onion oil could be formed with the highest yield of microencapsulation (more than 95%) under optimal conditions.

Design and Implementation of A Distributed Information Integration System based on Metadata Registry (메타데이터 레지스트리 기반의 분산 정보 통합 시스템 설계 및 구현)

  • Kim, Jong-Hwan;Park, Hea-Sook;Moon, Chang-Joo;Baik, Doo-Kwon
    • The KIPS Transactions:PartD
    • /
    • v.10D no.2
    • /
    • pp.233-246
    • /
    • 2003
  • The mediator-based system integrates heterogeneous information systems with the flexible manner. But it does not give much attention on the query optimization issues, especially for the query reusing. The other thing is that it does not use standardized metadata for schema matching. To improve this two issues, we propose mediator-based Distributed Information Integration System (DIIS) which uses query caching regarding performance and uses ISO/IEC 11179 metadata registry in terms of standardization. The DIIS is designed to provide decision-making support, which logically integrates the distributed heterogeneous business information systems based on the Web environment. We designed the system in the aspect of three-layer expression formula architecture using the layered pattern to improve the system reusability and to facilitate the system maintenance. The functionality and flow of core components of three-layer architecture are expressed in terms of process line diagrams and assembly line diagrams of Eriksson Penker Extension Model (EPEM), a methodology of an extension of UML. For the implementation, Supply Chain Management (SCM) domain is used. And we used the Web-based environment for user interface. The DIIS supports functions of query caching and query reusability through Query Function Manager (QFM) and Query Function Repository (QFR) such that it enhances the query processing speed and query reusability by caching the frequently used queries and optimizing the query cost. The DIIS solves the diverse heterogeneity problems by mapping MetaData Registry (MDR) based on ISO/IEC 11179 and Schema Repository (SCR).

Acoustic Full-waveform Inversion Strategy for Multi-component Ocean-bottom Cable Data (다성분 해저면 탄성파 탐사자료에 대한 음향파 완전파형역산 전략)

  • Hwang, Jongha;Oh, Ju-Won;Lee, Jinhyung;Min, Dong-Joo;Jung, Heechul;Song, Youngsoo
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.1
    • /
    • pp.38-49
    • /
    • 2020
  • Full-waveform inversion (FWI) is an optimization process of fitting observed and modeled data to reconstruct high-resolution subsurface physical models. In acoustic FWI (AFWI), pressure data acquired using a marine streamer has mainly been used to reconstruct the subsurface P-wave velocity models. With recent advances in marine seismic-acquisition techniques, acquiring multi-component data in marine environments have become increasingly common. Thus, AFWI strategies must be developed to effectively use marine multi-component data. Herein, we proposed an AFWI strategy using horizontal and vertical particle-acceleration data. By analyzing the modeled acoustic data and conducting sensitivity kernel analysis, we first investigated the characteristics of each data component using AFWI. Common-shot gathers show that direct, diving, and reflection waves appearing in the pressure data are separated in each component of the particle-acceleration data. Sensitivity kernel analyses show that the horizontal particle-acceleration wavefields typically contribute to the recovery of the long-wavelength structures in the shallow part of the model, and the vertical particle-acceleration wavefields are generally required to reconstruct long- and short-wavelength structures in the deep parts and over the whole area of a given model. Finally, we present a sequential-inversion strategy for using the particle-acceleration wavefields. We believe that this approach can be used to reconstruct a reasonable P-wave velocity model, even when the pressure data is not available.

Vibration Analysis of Large Structures by the Component-Mode Synthesis (부분구조진동형 합성방법에 의한 대형구조계의 진동해석)

  • B.H. Kim;T.Y. Chung;K.C. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.3
    • /
    • pp.116-126
    • /
    • 1993
  • The finite element method(FEM) has been commonly used for structural dynamic analysis. However, the direct global application of FEM to large complex structures such as ships and offshore structures requires considerable computational efforts, and remarkably more in structural dynamic optimization problems. Adoption of the component-mode synthesis method is an efficient means to overcome the above difficulty. Among three classes of the component-mode synthesis method, the free-interface mode method is recognized to have the advantages of better computational efficiency and easier implementation of substructures' experimental results, but the disadvantage of lower accuracy in analytical results. In this paper, an advanced method to improve the accuracy in the application of the free-interface mode method for the vibration analysis of large complex structures is presented. In order to compensate the truncation effect of the higher modes of substructures in the synthesis process, both residual inertia and stiffness effects are taken into account and a frequency shifting technique is introduced in the formulation of the residual compliance of substructures. The introduction of the frequency shrift ins not only excludes cumbersome manipulation of singular matrices for semi-definite substructural systems but gives more accurate results around the specified shifting frequency. Numerical examples of typical structural models including a ship-like two dimensional finite element model show that the analysis results based on the presented method are well competitive in accuracy with those obtained by the direst global FEM analysis for the frequencies which are lower than the highest one employed in the synthesis with remarkably higher computational efficiency and that the presented method is more efficient and accurate than the fixed-interface mode method.

  • PDF

Ultrasound-assisted Extraction of Total Flavonoids from Wheat Sprout: Optimization Using Central Composite Design Method (밀싹으로부터 플라보노이드성분의 초음파 추출 : 중심합성계획모델을 이용한 최적화)

  • Lee, Seung Bum;Wang, Xiaozheng;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.663-669
    • /
    • 2018
  • The process of extracting active ingredients from wheat sprout using ultrasound assisted method was optimized with a central composite design model. The response value of the central composite design model established the extraction yield and the total flavonoids content, main effects and interactive effects were analyzed depending on independent variables such as the extraction time, volume ratio of ethanol to ultrapure water, and ultrasonic irradiation power. The volume ratio of ethanol to ultrapure water and ultrasonic irradiation power were relatively large for the extraction yield and the extraction time was most significantly affected the total flavonoids, Considering both the extraction yield and total flavonoids content, the optimal extraction conditions were as follows: the extraction time of 17.00 min, volume ratio of ethanol to ultrapure water of 50.25 vol%, ultrasonic irradiation power of 551.70 W. In this case, the extraction yield and total flavonoids content were 28.43 wt% and $29.99{\mu}g\;QE/mL\;dw$, respectively. The actual experimental extraction yield and total flavonoids content under this condition were 8.73 wt% and $29.65{\mu}g\;QE/mL\;dw$, respectively with respective error rates of 1.05 and 1.13%.

A Study on the Performance Improvement of Software Digital Filter using GPU (GPU를 이용한 소프트웨어 디지털 필터의 성능개선에 관한 연구)

  • Yeom, Jae-Hwan;Oh, Se-Jin;Roh, Duk-Gyoo;Jung, Dong-Kyu;Hwang, Ju-Yeon;Oh, Chungsik;Kim, Hyo-Ryoung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.4
    • /
    • pp.153-161
    • /
    • 2018
  • This paper describes the performance improvement of Software (SW) digital filter using GPU (Graphical Processing Unit). The previous developed SW digital filter has a problem that it operates on a CPU (Central Processing Unit) basis and has a slow speed. The GPU was introduced to filter the data of the EAVN (East Asian VLBI Network) observation to improve the operation speed and to process data with other stations through filtering, respectively. In order to enhance the computational speed of the SW digital filter, NVIDIA Titan V GPU board with built-in Tensor Core is used. The processing speed of about 0.78 (1Gbps, 16MHz BW, 16-IF) and 1.1 (2Gbps, 32MHz BW, 16-IF) times for the observing time was achieved by filtering the 95 second observation data of 2 Gbps (512 MHz BW, 1-IF), respectively. In addition, 2Gbps data is digitally filtered for the 1 and 2Gbps simultaneously observed with KVN (Korean VLBI Network), and compared with the 1Gbps, we obtained similar values such as cross power spectrum, phase, and SNR (Signal to Noise Ratio). As a result, the effectiveness of developed SW digital filter using GPU in this research was confirmed for utilizing the data processing and analysis. In the future, it is expected that the observation data will be able to be filtered in real time when the distributed processing optimization of source code for using multiple GPU boards.

Improved breakdown characteristics of Ga2O3 Schottky barrier diode using floating metal guard ring structure (플로팅 금속 가드링 구조를 이용한 Ga2O3 쇼트키 장벽 다이오드의 항복 특성 개선 연구)

  • Choi, June-Heang;Cha, Ho-Young
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.193-199
    • /
    • 2019
  • In this study, we have proposed a floating metal guard ring structure based on TCAD simulation in order to enhance the breakdown voltage characteristics of gallium oxide ($Ga_2O_3$) vertical high voltage switching Schottky barrier diode. Unlike conventional guard ring structures, the floating metal guard rings do not require an ion implantation process. The locally enhanced high electric field at the anode corner was successfully suppressed by the metal guard rings, resulting in breakdown voltage enhancement. The number of guard rings and their width and spacing were varied for structural optimization during which the current-voltage characteristics and internal electric field and potential distributions were carefully investigated. For an n-type drift layer with a doping concentration of $5{\times}10^{16}cm^{-3}$ and a thickness of $5{\mu}m$, the optimum guard ring structure had 5 guard rings with an individual ring width of $1.5{\mu}m$ and a spacing of $0.2{\mu}m$ between rings. The breakdown voltage was increased from 940 V to 2000 V without degradation of on-resistance by employing the optimum guard ring structure. The proposed floating metal guard ring structure can improve the device performance without requiring an additional fabrication step.

Preliminary Study on the Development of a Platform for the Optimization of Beach Stabilization Measures against Beach Erosion II - Centering on the Development of Physics-Based Morphology Model for the Estimation of an Erosion Rate of Nourished Beach (해역별 최적 해빈 안정화 공법 선정 Platform 개발을 위한 기초연구 II - 양빈 된 해빈 침식률 산정을 위한 물리기반 해빈 지형모형 개발을 중심으로)

  • Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.320-333
    • /
    • 2019
  • In this study, a physics-based 3D morphology model for the estimation of an erosion rate of nourished beach is newly proposed. As a hydrodynamic module, IHFOAM toolbox having its roots on the OpenFoam is used. On the other hand, the morphology model comprised a transport equation for suspended sediment, and Exner type equation derived from the viewpoint of sediment budget with the bed load being taken to accounted. In doing so, the incipient motion of sediment is determined based on the Shields Diagram, while the bottom suspended sediment concentration, the bed load transport rate is figured out using the bottom shearing stress directly calculated from the numerically simulated flow field rather than the conventional quadratic law and frictional coefficient. In order to verify the proposed morphology model, we numerically simulate the nonlinear shoaling, breaking over the uniform beach of 1/m slope, and its ensuing morphology change. Numerical results show that the partially skewed, and asymmetric bottom shearing stresses can be successfully simulated. It was shown that sediments suspended and eroded at the foreshore by wave breaking are gradually drifted toward a shore and accumulated in the process of up-rush, which eventually leads to the formation of swash bar. It is also worth mentioning that the breaker bar formed by the sediments dragged by the back-wash flow which commences at the pinnacle of up-rush as the back-wash flow gets weakened due to the increased depth was successfully duplicated in the numerical simulation.

IoT Based Real-Time Indoor Air Quality Monitoring Platform for a Ventilation System (청정환기장치 최적제어를 위한 IoT 기반 실시간 공기질 모니터링 플랫폼 구현)

  • Uprety, Sudan Prasad;Kim, Yoosin
    • Journal of Internet Computing and Services
    • /
    • v.21 no.6
    • /
    • pp.95-104
    • /
    • 2020
  • In this paper, we propose the real time indoor air quality monitoring and controlling platform on cloud using IoT sensor data such as PM10, PM2.5, CO2, VOCs, temperature, and humidity which has direct or indirect impact to indoor air quality. The system is connected to air ventilator to manage and optimize the indoor air quality. The proposed system has three main parts; First, IoT data collection service to measure, and collect indoor air quality in real time from IoT sensor network, Second, Big data processing pipeline to process and store the collected data on cloud platform and Finally, Big data analysis and visualization service to give real time insight of indoor air quality on mobile and web application. For the implication of the proposed system, IoT sensor kits are installed on three different public day care center where the indoor pollution can cause serious impact to the health and education of growing kids. Analyzed results are visualized on mobile and web application. The impact of ventilation system to indoor air quality is tested statistically and the result shows the proper optimization of indoor air quality.

A study on the 3-step classification algorithm for the diagnosis and classification of refrigeration system failures and their types (냉동시스템 고장 진단 및 고장유형 분석을 위한 3단계 분류 알고리즘에 관한 연구)

  • Lee, Kangbae;Park, Sungho;Lee, Hui-Won;Lee, Seung-Jae;Lee, Seung-hyun
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.8
    • /
    • pp.31-37
    • /
    • 2021
  • As the size of buildings increases due to urbanization due to the development of industry, the need to purify the air and maintain a comfortable indoor environment is also increasing. With the development of monitoring technology for refrigeration systems, it has become possible to manage the amount of electricity consumed in buildings. In particular, refrigeration systems account for about 40% of power consumption in commercial buildings. Therefore, in order to develop the refrigeration system failure diagnosis algorithm in this study, the purpose of this study was to understand the structure of the refrigeration system, collect and analyze data generated during the operation of the refrigeration system, and quickly detect and classify failure situations with various types and severity . In particular, in order to improve the classification accuracy of failure types that are difficult to classify, a three-step diagnosis and classification algorithm was developed and proposed. A model based on SVM and LGBM was presented as a classification model suitable for each stage after a number of experiments and hyper-parameter optimization process. In this study, the characteristics affecting failure were preserved as much as possible, and all failure types, including refrigerant-related failures, which had been difficult in previous studies, were derived with excellent results.