DOI QR코드

DOI QR Code

Acoustic Full-waveform Inversion Strategy for Multi-component Ocean-bottom Cable Data

다성분 해저면 탄성파 탐사자료에 대한 음향파 완전파형역산 전략

  • Hwang, Jongha (Seoul National University, Dept. of Energy Systems Engineering) ;
  • Oh, Ju-Won (Jeonbuk National University, Dept. of Resources and Energy Engineering) ;
  • Lee, Jinhyung (Seoul National University, Dept. of Energy Systems Engineering) ;
  • Min, Dong-Joo (Seoul National University, Dept. of Energy Systems Engineering) ;
  • Jung, Heechul (POSCO INTERNATIONAL, E&P Division, Geology and Geophysics Department) ;
  • Song, Youngsoo (Jeonbuk National University, Dept. of Resources and Energy Engineering)
  • 황종하 (서울대학교 에너지시스템공학부) ;
  • 오주원 (전북대학교 자원에너지공학과) ;
  • 이진형 (서울대학교 에너지시스템공학부) ;
  • 민동주 (서울대학교 에너지시스템공학부) ;
  • 정희철 (포스코 인터내셔널, 에너지본부 자원탐사실 지질지구물리그룹) ;
  • 송영수 (전북대학교 자원에너지공학과)
  • Received : 2019.12.02
  • Accepted : 2020.02.21
  • Published : 2020.02.28

Abstract

Full-waveform inversion (FWI) is an optimization process of fitting observed and modeled data to reconstruct high-resolution subsurface physical models. In acoustic FWI (AFWI), pressure data acquired using a marine streamer has mainly been used to reconstruct the subsurface P-wave velocity models. With recent advances in marine seismic-acquisition techniques, acquiring multi-component data in marine environments have become increasingly common. Thus, AFWI strategies must be developed to effectively use marine multi-component data. Herein, we proposed an AFWI strategy using horizontal and vertical particle-acceleration data. By analyzing the modeled acoustic data and conducting sensitivity kernel analysis, we first investigated the characteristics of each data component using AFWI. Common-shot gathers show that direct, diving, and reflection waves appearing in the pressure data are separated in each component of the particle-acceleration data. Sensitivity kernel analyses show that the horizontal particle-acceleration wavefields typically contribute to the recovery of the long-wavelength structures in the shallow part of the model, and the vertical particle-acceleration wavefields are generally required to reconstruct long- and short-wavelength structures in the deep parts and over the whole area of a given model. Finally, we present a sequential-inversion strategy for using the particle-acceleration wavefields. We believe that this approach can be used to reconstruct a reasonable P-wave velocity model, even when the pressure data is not available.

음향파 완전파형역산은 탄성파 탐사를 통해 얻은 관측자료와 음향파 모델링자료를 맞춤으로써 지층의 속도모델을 고해상도로 구축하는 최적화 과정이다. 기존의 스트리머를 이용한 해양 탄성파 탐사 자료에 대한 음향파 완전파형역산에서는 압력자료만을 활용하여 P파 속도모델을 구축한다. 그러나 최근 다성분 해저면 탄성파 탐사기술의 발달로 다성분자료의 취득 사례가 늘고 있으며, 이에 따라 해양에서 얻어지는 다성분 자료를 활용한 음향파 완전파형역산 기법에 대한 연구가 필요하다. 이 연구에서는 수평 및 수직 입자가속도 자료를 활용한 효과적인 음향파 완전파형역산 전략을 제시하고자 한다. 이를 위해, 우선 음향파 모델링으로 제작된 압력 및 입자가속도 자료와 민감도커널을 분석하여 파형역산 과정에서 각 자료의 성분별 특성을 관찰하였다. 압력 자료에 함께 나타났던 직접파, 다이빙파 및 반사파가 수직 및 수평 입자가속도 자료에서 파동의 진행방향에 따라 분리되어 나타나는 것을 확인하였으며, 수평 입자가속도 자료는 상부의 장파장구조를, 수직 입자가속도 자료는 하부의 장파장구조와 전체 영역에서의 단파장구조를 구축하는 데 효과적임을 확인할 수 있었다. 이러한 분석 결과를 바탕으로 입자가속도 자료만을 활용해 음향파 완전파형역산을 수행하는 순차적 자료 활용전략을 제시하며, 압력자료를 얻지 못하였거나 품질이 낮은 경우에도 입자가속도 자료를 활용하는 음향파 완전파형역산을 통해 양호한 P파 속도모델을 구축할 수 있을 것으로 기대된다.

Keywords

References

  1. Akrami, M., 2017, An Algorithm for Full Waveform Inversion of Vector Acoustic Data, Ph.D. thesis, Memorial University of Newfoundland.
  2. Brandsberg-Dahl, S., Ursin, B., and de Hoop, M. V., 2003, Seismic velocity analysis in the scattering-angle/azimuth domain, Geophys. Prospect., 51(4), 295-314. https://doi.org/10.1046/j.1365-2478.2003.00370.x
  3. Bunks, C., Saleck, F. M., Zaleski, S., and Chavent, G., 1995, Multiscale seismic waveform inversion, Geophysics, 60(5), 1457-1473. https://doi.org/10.1190/1.1443880
  4. Butzer, S., 2015, 3D elastic time-frequency full-waveform inversion, Ph.D. thesis, Karlsruhe Institute of Technology.
  5. Cho, C. S., and Lee, H. I., 2009, Application of Convolutional Perfectly Matched Layer Method to Numerical Elastic Modeling Using Rotated Staggered Grid, Geophys. and Geophys. Explor., 12(2), 183-191 (in Korean with English abstract).
  6. Choi, Y. J., Shin, S. R., Ha, J. H., Chung, W. K., and Kim, W. S., 2014, Velocity Model Building using Waveform Inversion from Single Channel Engineering Seismic Survey, Geophys. and Geophys. Explor., 17(4), 231-241 (in Korean with English abstract). https://doi.org/10.7582/GGE.2014.17.4.231
  7. Gholami, Y., Brossier, R., Operto, S., Ribodetti, A., and Virieux, J., 2013, Which parameterization is suitable for acoustic vertical transverse isotropic full waveform inversion? Part 1: Sensitivity and trade-off analysis, Geophysics, 78(2), R81-R105. https://doi.org/10.1190/geo2012-0204.1
  8. Jeong, G., Hwang, J., and Min, D.-J., 2017, Comparison of weighting techniques for acoustic full waveform inversion, J. Appl. Geophy., 147, 16-27. https://doi.org/10.1016/j.jappgeo.2017.10.007
  9. Kim, B. Y., and Byun, J. M., 2009, P-wave Velocity Analysis Around the BSR Using Wide-angle Ocean-bottom Seismic Data, Geophys. and Geophys. Explor., 12(2), 173-182 (in Korean with English abstract).
  10. Kim, B. Y., and Byun, J. M., 2011, S-wave Velocity Derivation Near the BSR Depth of the Gas-hydrate Prospect Area Using Marine Multi-component Seismic Data, Econ. Environ. Geol., 44(3), 229-238 (in Korean with English abstract). https://doi.org/10.9719/EEG.2011.44.3.229
  11. Komatitsch, D., and Martin, R., 2007, An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation, Geophysics, 72(5), SM155-SM167. https://doi.org/10.1190/1.2757586
  12. Lee, H.-Y., Koo, N.-H., Kim, B.-Y., Kang, M., and Park, K.-P., 2019, Status of Marine Seismic Exploration Technology, J. Korean Soc. Miner. Energy Resour. Eng., 56(1), 86-106 (in Korean with English abstract). https://doi.org/10.32390/ksmer.2019.56.1.086
  13. Min, D.-J., and Shin, C., 2006, Refraction tomography using a waveform-inversion back-propagation technique, Geophysics, 71(3), R21-R30. https://doi.org/10.1190/1.2194522
  14. Oh, J. W., and Alkhalifah, T., 2016, Elastic orthorhombic anisotropic parameter inversion: An analysis of parameterization, Geophysics, 81(6), C279-C293. https://doi.org/10.1190/geo2015-0656.1
  15. Oh, J. W., and Alkhalifah, T., 2018, Full waveform inversion using envelope-based global correlation norm, Geophys. J. Int., 213(2), 815-823. https://doi.org/10.1093/gji/ggy031
  16. Oh, J. W., and Alkhalifah, T., 2019, Study on the full-waveform inversion strategy for 3D elastic orthorhombic anisotropic media: application to ocean bottom cable data, Geophys. Prospect., 67(5), 1219-1242. https://doi.org/10.1111/1365-2478.12768
  17. Park, M. H., Lee, C. S., Kim, B.-Y., Kim, J. H., Kim, K. J., and Shinn, Y. J., 2018, Preliminary Results of the Pre-injection Monitoring Survey at an Offshore CO2 Injection Site in the Yeongil Bay, The J. Eng. Geol., 28(2), 247-258 (in Korean with English abstract). https://doi.org/10.9720/KSEG.2018.2.247
  18. Pratt, R. G., Shin, C., and Hicks, G. J., 1998, Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion, Geophys. J. Int., 133(2), 341-362. https://doi.org/10.1046/j.1365-246X.1998.00498.x
  19. Ramos-Martinez, J., Qiu, L., Valenciano, A. A., Jiang, X., and Chemingui, N., 2019, Long-wavelength FWI updates in the presence of cycle skipping, The Leading Edge, 38(3), 193-196. https://doi.org/10.1190/tle38030193.1
  20. Shin, C., Jang, S., and Min, D.-J., 2001, Improved amplitude preservation for prestack depth migration by inverse scattering theory, Geophys. Prospect., 49(5), 592-606. https://doi.org/10.1046/j.1365-2478.2001.00279.x
  21. Shin, Y., Oh, J. W., Kim, S., and Min, D.-J., 2019, Monocomponent multiparameter acoustic full waveform inversion in vertically transverse isotropic media using converted vector wavefields, J. Appl. Geophy., 170, 103816 https://doi.org/10.1016/j.jappgeo.2019.07.010
  22. Shinn, Y. J., Kwon, Y. K., Yoon, J. R., Kim, B. Y., and Cheong, S., 2018, Result of $CO_2$ geological storage site survey for small-scale demonstration in Pohang Basin, Yeongil Bay, SE Korea, The J. Eng. Geol., 28(2), 161-174 (in Korean with English abstract). https://doi.org/10.9720/KSEG.2018.2.161
  23. Sirgue, L., Etgen, J. T., and Albertin, U., 2008, 3D Frequency Domain Waveform Inversion Using Time Domain Finite Difference Methods, 70th EAGE Conference and Exhibition incorporating SPE EUROPEC 2008.
  24. Sun, R., McMechan, G. A., Hsiao, H.-H., and Chow, J., 2004, Separating P- and S-waves in prestack 3D elastic seismograms using divergence and curl, Geophysics, 69(1), 286-297. https://doi.org/10.1190/1.1649396
  25. Szydlik, T., Smith, P., Way, S., Aamodt, L., and Friedrich, C., 2007, 3D PP/PS prestack depth migration on the Volve field, First Break, 25(4), 43-47.
  26. Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation, Geophysics, 49(8), 1259-1266. https://doi.org/10.1190/1.1441754
  27. Virieux, J., 1984, SH-wave propagation in heterogeneous media: Velocity-stress finite difference method, Geophysics, 49(11), 1933-1942. https://doi.org/10.1190/1.1441605
  28. Virieux, J., and Operto, S., 2009, An overview of full-waveform inversion in exploration geophysics. Geophysics, 74(6), WCC1-WCC26. https://doi.org/10.1190/1.3238367
  29. Yan, J., and Sava, P., 2009, Elastic wave-mode separation for VTI media, Geophysics, 74(5), WB19-WB32. https://doi.org/10.1190/1.3184014
  30. Yoon, B. J., and Shin, C., 2010, A Comparative Study of the Conventional Objective Function and the Logarithmic Objective Function for Waveform Inversion using L2-norm and L1-norm, J. Korean Soc. Miner. Energy Resour. Eng., 47(2), 151-157 (in Korean with English abstract).
  31. Zhong, Y., and Liu, Y., 2019, Source-independent time-domain vector-acoustic full-waveform inversion, Geophysics, 84(4), R489-R505. https://doi.org/10.1190/geo2018-0304.1