• Title/Summary/Keyword: Optimization approach

Search Result 2,382, Processing Time 0.036 seconds

Optimization of the Truss Structures Using Member Stress Approximate method (응력근사해법(應力近似解法)을 이용한 평면(平面)트러스구조물(構造物)의 형상최적화(形狀最適化)에 관한 연구(研究))

  • Lee, Gyu Won;You, Hee Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.73-84
    • /
    • 1993
  • In this research, configuration design optimization of plane truss structure has been tested by using decomposition technique. In the first level, the problem of transferring the nonlinear programming problem to linear programming problem has been effectively solved and the number of the structural analysis necessary for doing the sensitivity analysis can be decreased by developing stress constraint into member stress approximation according to the design space approach which has been proved to be efficient to the sensitivity analysis. And the weight function has been adopted as cost function in order to minimize structures. For the design constraint, allowable stress, buckling stress, displacement constraint under multi-condition and upper and lower constraints of the design variable are considered. In the second level, the nodal point coordinates of the truss structure are used as coordinating variable and the objective function has been taken as the weight function. By treating the nodal point coordinates as design variable, unconstrained optimal design problems are easy to solve. The decomposition method which optimize the section areas in the first level and optimize configuration variables in the second level was applied to the plane truss structures. The numerical comparisons with results which are obtained from numerical test for several truss structures with various shapes and any design criteria show that convergence rate is very fast regardless of constraint types and configuration of truss structures. And the optimal configuration of the truss structures obtained in this study is almost the identical one from other results. The total weight couldbe decreased by 5.4% - 15.4% when optimal configuration was accomplished, though there is some difference.

  • PDF

Intelligent Optimal Route Planning Based on Context Awareness (상황인식 기반 지능형 최적 경로계획)

  • Lee, Hyun-Jung;Chang, Yong-Sik
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.117-137
    • /
    • 2009
  • Recently, intelligent traffic information systems have enabled people to forecast traffic conditions before hitting the road. These convenient systems operate on the basis of data reflecting current road and traffic conditions as well as distance-based data between locations. Thanks to the rapid development of ubiquitous computing, tremendous context data have become readily available making vehicle route planning easier than ever. Previous research in relation to optimization of vehicle route planning merely focused on finding the optimal distance between locations. Contexts reflecting the road and traffic conditions were then not seriously treated as a way to resolve the optimal routing problems based on distance-based route planning, because this kind of information does not have much significant impact on traffic routing until a a complex traffic situation arises. Further, it was also not easy to take into full account the traffic contexts for resolving optimal routing problems because predicting the dynamic traffic situations was regarded a daunting task. However, with rapid increase in traffic complexity the importance of developing contexts reflecting data related to moving costs has emerged. Hence, this research proposes a framework designed to resolve an optimal route planning problem by taking full account of additional moving cost such as road traffic cost and weather cost, among others. Recent technological development particularly in the ubiquitous computing environment has facilitated the collection of such data. This framework is based on the contexts of time, traffic, and environment, which addresses the following issues. First, we clarify and classify the diverse contexts that affect a vehicle's velocity and estimates the optimization of moving cost based on dynamic programming that accounts for the context cost according to the variance of contexts. Second, the velocity reduction rate is applied to find the optimal route (shortest path) using the context data on the current traffic condition. The velocity reduction rate infers to the degree of possible velocity including moving vehicles' considerable road and traffic contexts, indicating the statistical or experimental data. Knowledge generated in this papercan be referenced by several organizations which deal with road and traffic data. Third, in experimentation, we evaluate the effectiveness of the proposed context-based optimal route (shortest path) between locations by comparing it to the previously used distance-based shortest path. A vehicles' optimal route might change due to its diverse velocity caused by unexpected but potential dynamic situations depending on the road condition. This study includes such context variables as 'road congestion', 'work', 'accident', and 'weather' which can alter the traffic condition. The contexts can affect moving vehicle's velocity on the road. Since these context variables except for 'weather' are related to road conditions, relevant data were provided by the Korea Expressway Corporation. The 'weather'-related data were attained from the Korea Meteorological Administration. The aware contexts are classified contexts causing reduction of vehicles' velocity which determines the velocity reduction rate. To find the optimal route (shortest path), we introduced the velocity reduction rate in the context for calculating a vehicle's velocity reflecting composite contexts when one event synchronizes with another. We then proposed a context-based optimal route (shortest path) algorithm based on the dynamic programming. The algorithm is composed of three steps. In the first initialization step, departure and destination locations are given, and the path step is initialized as 0. In the second step, moving costs including composite contexts into account between locations on path are estimated using the velocity reduction rate by context as increasing path steps. In the third step, the optimal route (shortest path) is retrieved through back-tracking. In the provided research model, we designed a framework to account for context awareness, moving cost estimation (taking both composite and single contexts into account), and optimal route (shortest path) algorithm (based on dynamic programming). Through illustrative experimentation using the Wilcoxon signed rank test, we proved that context-based route planning is much more effective than distance-based route planning., In addition, we found that the optimal solution (shortest paths) through the distance-based route planning might not be optimized in real situation because road condition is very dynamic and unpredictable while affecting most vehicles' moving costs. For further study, while more information is needed for a more accurate estimation of moving vehicles' costs, this study still stands viable in the applications to reduce moving costs by effective route planning. For instance, it could be applied to deliverers' decision making to enhance their decision satisfaction when they meet unpredictable dynamic situations in moving vehicles on the road. Overall, we conclude that taking into account the contexts as a part of costs is a meaningful and sensible approach to in resolving the optimal route problem.

Isogeometric Shape Sensitivity Analysis in Generalized Curvilinear Coordinate Systems (일반 곡면 좌표계에서 구현된 아이소-지오메트릭 형상 설계민감도 해석)

  • Ha, Youn Doh;Yoon, Minho;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.497-504
    • /
    • 2012
  • Finite element analysis is to approximate a geometry model developed in computer-aided design(CAD) to a finite element model, thus the conventional shape design sensitivity analysis and optimization using the finite element method have some difficulties in the parameterization of geometry. However, isogeometric analysis is to build a geometry model and directly use the functions describing the geometry in analysis. Therefore, the geometric properties can be embedded in the NURBS basis functions and control points so that it has potential capability to overcome the aforementioned difficulties. In this study, the isogeometric structural analysis and shape design sensitivity analysis in the generalized curvilinear coordinate(GCC) systems are discussed for the curved geometry. Representing the higher order geometric information, such as normal, tangent and curvature, yields the isogeometric approach to be the best way for generating exact GCC systems from a given CAD geometry. The developed GCC isogeometric structural analysis and shape design sensitivity analysis are verified to show better accuracy and faster convergency by comparing with the results obtained from the conventional isogeometric method.

Distributed Throughput-Maximization Using the Up- and Downlink Duality in Wireless Networks (무선망에서의 상하향 링크 쌍대성 성질을 활용한 분산적 수율 최대화 기법)

  • Park, Jung-Min;Kim, Seong-Lyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11A
    • /
    • pp.878-891
    • /
    • 2011
  • We consider the throughput-maximization problem for both the up- and downlink in a wireless network with interference channels. For this purpose, we design an iterative and distributive uplink algorithm based on Lagrangian relaxation. Using the uplink power prices and network duality, we achieve throughput-maximization in the dual downlink that has a symmetric channel and an equal power budget compared to the uplink. The network duality we prove here is a generalized version of previous research [10], [11]. Computational tests show that the performance of the up- and downlink throughput for our algorithms is close to the optimal value for the channel orthogonality factor, ${\theta}{\in}$(0.5, 1]. On the other hand, when the channels are slightly orthogonal (${\theta}{\in}$(0, 0.5]), we observe some throughput degradation in the downlink. We have extended our analysis to the real downlink that has a nonsymmetric channel and an unequal power budget compared to the uplink. It is shown that the modified duality-based approach is thoroughly applied to the real downlink. Considering the complexity of the algorithms in [6] and [18], we conclude that these results are quite encouraging in terms of both performance and practical applicability of the generalized duality theorem.

Novel Power Bus Design Method for High-Speed Digital Boards (고속 디지털 보드를 위한 새로운 전압 버스 설계 방법)

  • Wee, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.23-32
    • /
    • 2006
  • Fast and accurate power bus design (FAPUD) method for multi-layers high-speed digital boards is devised for the power supply network design tool for accurate and precise high speed board. FAPUD is constructed, based on two main algorithms of the PBEC (Path Based Equivalent Circuit) model and the network synthesis method. The PBEC model exploits simple arithmetic expressions of the lumped 1-D circuit model from the electrical parameters of a 2-D power distribution network. The circuit level design based on PBEC is carried with the proposed regional approach. The circuit level design directly calculates and determines the size of on-chip decoupling capacitors, the size and the location of off-chip decoupling capacitors, and the effective inductances of the package power bus. As a design output, a lumped circuit model and a pre-layout of the power bus including a whole decoupling capacitors are obtained after processing FAPUD. In the tuning procedure, the board re-optimization considering simultaneous switching noise (SSN) added by I/O switching can be carried out because the I/O switching effect on a power supply noise can be estimated over the operation frequency range with the lumped circuit model. Furthermore, if a design changes or needs to be tuned, FAPUD can modify design by replacing decoupling capacitors without consuming other design resources. Finally, FAPUD is accurate compared with conventional PEEC-based design tools, and its design time is 10 times faster than that of conventional PEEC-based design tools.

Voltage-Frequency-Island Aware Energy Optimization Methodology for Network-on-Chip Design (전압-주파수-구역을 고려한 에너지 최적화 네트워크-온-칩 설계 방법론)

  • Kim, Woo-Joong;Kwon, Soon-Tae;Shin, Dong-Kun;Han, Tae-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.8
    • /
    • pp.22-30
    • /
    • 2009
  • Due to high levels of integration and complexity, the Network-on-Chip (NoC) approach has emerged as a new design paradigm to overcome on-chip communication issues and data bandwidth limits in conventional SoC(System-on-Chip) design. In particular, exponentially growing of energy consumption caused by high frequency, synchronization and distributing a single global clock signal throughout the chip have become major design bottlenecks. To deal with these issues, a globally asynchronous, locally synchronous (GALS) design combined with low power techniques is considered. Such a design style fits nicely with the concept of voltage-frequency-islands (VFI) which has been recently introduced for achieving fine-grain system-level power management. In this paper, we propose an efficient design methodology that minimizes energy consumption by VFI partitioning on an NoC architecture as well as assigning supply and threshold voltage levels to each VFI. The proposed algorithm which find VFI and appropriate core (or processing element) supply voltage consists of traffic-aware core graph partitioning, communication contention delay-aware tile mapping, power variation-aware core dynamic voltage scaling (DVS), power efficient VFI merging and voltage update on the VFIs Simulation results show that average 10.3% improvement in energy consumption compared to other existing works.

Analysis of Seed Storage Data and Longevity for Agastache rugosa (배초향 (Agastache rugosa) 종자의 저장 반응과 수명 분석)

  • Lee, Mi Hyun;Hong, Sun Hee;Na, Chae Sun;Kim, Jeong Gyu;Kim, Tae Wan;Lee, Yong Ho
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.2
    • /
    • pp.207-214
    • /
    • 2017
  • There is little information about the seed longevity of wild plants, although seed bank storage is an important tool for biodiversity conservation. This study was conducted to predict the seed viability equation of Agastache rugosa. The A. rugosa seeds were stored at moisture contents ranging from 2.7 to 12.5%, and temperatures between 10 and $50^{\circ}C$. Viability data were fitted to the seed viability equation in a one step and two step approach. The A. rugosa seeds showed orthodox seed storage behaviour. The viability constants were $K_E=6.9297$, $C_W=4.2551$ $C_H=0.0329$, and $C_Q=0.00048$. The P85 of A. rugosa seeds was predicted to 152 years under standard seed bank conditions. The P85 predicted by seed viability equation can be used as basic information for optimization of seed storage processes.

Impedance-Based Characterization of 2-Dimenisonal Conduction Transports in the LaAlO3/SrxCa1-xTiO3/SrTiO3 systems

  • Choi, Yoo-Jin;Park, Da-Hee;Kim, Eui-Hyun;Park, Chan-Rok;Kwon, Kyeong-Woo;Moon, Seon-Young;Baek, Seung-Hyub;Kim, Jin-Sang;Hwang, Jinha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.171.2-171.2
    • /
    • 2016
  • The 2-dimensiona electron gas (2DEG) layers have opened tremendous interests in the heterooxide interfaces formed between two insulating materials, especially between LaAlO3 and $SrTiO_3$. The 2DEG layers exhibit extremely high mobility and carrier concentrations along with metallic transport phenomena unlike the constituent oxide materials, i.e., $LaAlO_3$ and $SrTiO_3$. The current work inserted artificially the interfacial layer, $Sr_xCa_{1-x}TiO_3$ between $LaAlO_3$ and $SrTiO_3$, with the aim to controlling the 2-dimensional transports. The insertion of the additional materials affect significantly their corresponding electrical transports. Such features have been probed using DC and AC-based characterizations. In particular, impedance spectroscopy was employed as an AC-based characterization tool. Frequency-dependent impedance spectroscopy have been widely applied to a number of electroceramic materials, such as varistors, MLCCs, solid electrolytes, etc. Impedance spectroscopy provides powerful information on the materials system: i) the simultaneous measurement of conductivity and dielectric constants, ii) systematic identification of electrical origins among bulk-, grain boundary-, and electrode-based responses, and iii) the numerical estimation on the uniformity of the electrical origins. Impedance spectroscopy was applied to the $LaAlO_3/Sr_xCa_{1-x}TiO_3/SrTiO_3$ system, in order to understand the 2-dimensional transports in terms of the interfacial design concepts. The 2-dimensional conduction behavior system is analyzed with special emphasis on the underlying mechanisms. Such approach is discussed towards rational optimization of the 2-dimensional nanoelectronic devices.

  • PDF

A Study on Effective Methods of Polygon Modeling through Modeling Process-Related System (모델링 공정 연계 시스템을 통한 효율적 폴리곤 모델링 기법에 대한 탐구)

  • Kim, Sang-Don;Lee, Hyun-Seok
    • Cartoon and Animation Studies
    • /
    • s.37
    • /
    • pp.143-158
    • /
    • 2014
  • In the modeling processes of 3D computer animation, methods to build optimal work conditions to realize real forms for more efficient works have been advanced. Digital sculpting software, published in 1999, ZBrush has been positioned as an essential factor in character model work requiring of realistic descriptions through different manufacturing methods from previous modeling work processes and easy shape realization. Their functional areas are expanding. So, in this production case paper, as a method to product more optimized animation character models, the efficiency of production method linking digital sculpting software (Z-Brush) and animation production software (Maya) was deliberated and its consequences and implications are suggested. To this end, first the technical features of polygon modeling and Retopology were reviewed. Second, based on it, the efficiency of animation character modeling work processes through step linking ZBrush and Maya suggested in this paper was analyzed. Third, based on the features drawn before, in order to prove the hypothesis on modeling optimization method suggested in this paper, the production process of character Dumvee from a short animation film, 'Cula & Mina' was analyzed as an example. Through this study, it was found that technical approach easiness and high level of completion could be realized through two software linked work processes. This study is considered to be a reference for optimizing production process of related industries or modeling-related classes by deliberating different modeling process linked systems.

Optimization of Tank Model Parameters Using Multi-Objective Genetic Algorithm (I): Methodology and Model Formulation (다목적 유전자알고리즘을 이용한 Tank 모형 매개변수 최적화(I): 방법론과 모형구축)

  • Kim, Tae-Soon;Jung, Il-Won;Koo, Bo-Young;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.9
    • /
    • pp.677-685
    • /
    • 2007
  • The objective of this study is to evaluate the applicability of multi-objective genetic algorithm(MOGA) in order to calibrate the parameters of conceptual rainfall-runoff model, Tank model. NSGA-II, one of the most imitating MOGA implementations, is combined with Tank model and four multi-objective functions such as to minimize volume error, root mean square error (RMSE), high flow RMSE, and low flow RMSE are used. When NSGA-II is employed with more than three multi-objective functions, a number of Pareto-optimal solutions usually becomes too large. Therefore, selecting several preferred Pareto-optimal solutions is essential for stakeholder, and preference-ordering approach is used in this study for the sake of getting the best preferred Pareto-optimal solutions. Sensitivity analysis is performed to examine the effect of initial genetic parameters, which are generation number and Population size, to the performance of NSGA-II for searching the proper paramters for Tank model, and the result suggests that the generation number is 900 and the population size is 1000 for this study.