DOI QR코드

DOI QR Code

Analysis of Seed Storage Data and Longevity for Agastache rugosa

배초향 (Agastache rugosa) 종자의 저장 반응과 수명 분석

  • Lee, Mi Hyun (Department of Plant Life and Environmental Science, Hankyong National University, RDA) ;
  • Hong, Sun Hee (O-Jeong-Eco-Resilience Institute) ;
  • Na, Chae Sun (Institute of Botany, University of Innsbruck) ;
  • Kim, Jeong Gyu (O-Jeong-Eco-Resilience Institute) ;
  • Kim, Tae Wan (Department of Plant Life and Environmental Science, Hankyong National University, RDA) ;
  • Lee, Yong Ho (O-Jeong-Eco-Resilience Institute)
  • 이미현 (국립한경대학교 식물생태환경과학과) ;
  • 홍선희 (고려대학교 오정에코리질리언스 연구소) ;
  • 나채선 (인스부르크대학교 식물연구소) ;
  • 김정규 (고려대학교 오정에코리질리언스 연구소) ;
  • 김태완 (국립한경대학교 식물생태환경과학과) ;
  • 이용호 (고려대학교 오정에코리질리언스 연구소)
  • Received : 2017.06.05
  • Accepted : 2017.06.16
  • Published : 2017.06.30

Abstract

There is little information about the seed longevity of wild plants, although seed bank storage is an important tool for biodiversity conservation. This study was conducted to predict the seed viability equation of Agastache rugosa. The A. rugosa seeds were stored at moisture contents ranging from 2.7 to 12.5%, and temperatures between 10 and $50^{\circ}C$. Viability data were fitted to the seed viability equation in a one step and two step approach. The A. rugosa seeds showed orthodox seed storage behaviour. The viability constants were $K_E=6.9297$, $C_W=4.2551$ $C_H=0.0329$, and $C_Q=0.00048$. The P85 of A. rugosa seeds was predicted to 152 years under standard seed bank conditions. The P85 predicted by seed viability equation can be used as basic information for optimization of seed storage processes.

본 연구에서 배초향 종자의 다양한 저장조건에서의 활력변화를 조사하여 종자 등온흡습곡선, 활력 공식을 예측하였다. 그 결과 배초향의 등온흡습곡선은 전형적인 S 형태로 나타났으나 Phase I이 관찰되지 않아 상대습도 11% 이전에서 단분자층 수분함량이 형성될 것으로 보인다. Log 수분함량에 대한 Log 수명(${\sigma}$)의 영향은 선형 반응을 보였다. 하지만 낮은 상대습도 조건(RH 11%)의 수명은 예측값보다 비교적 낮게 나타났다. 온도에 대한 수명의 반응은 2차 선형 반응을 보였으며, 모델의 예측값에 대하여 특별한 경향이 나타나지 않았다. Universal constant를 사용하는 Two step model을 활용한 배초향 종자 활력 공식의 예측 결과 높은 온도, 높은 수분함량에서는 비교적 모델과 비슷한 경향이 관찰되었으나, 낮은 온도, 낮은 수분함량에서는 데이터의 변이가 크게 나타나는 경향이 관찰되었다. 이는 야생 종자인 배초향 종자가 지닌 휴면, 활력의 불균일성과 같은 요인에 의한 것으로 판단된다. 배초향 종자의 활력 공식을 활용한 P85예측 결과 종자은행에서의 표준 조건에서 가장 긴 저장 기간을 보였다. 종자은행의 표준 건조조건에서 건조된 배초향 종자의 P85는 종자은행 장기저장조건 ($-20^{\circ}C$)이 196년으로 예측되었다. 하지만 one step 모형에서는 P85가 560년으로 예측되어 활력 공식의 예측 방식 선정의 중요성을 보여줬다. 배초향 종자와 같은 야생식물은 대량의 연구재료를 확보하기 쉽지 않기 때문에 일반적인 작물 종자 장기저장 프로세스와는 다르게 수명 예측을 활용하여 갱신 시기, 모니터링 시기의 최적화가 필요하다. 본 결과로 도출된 배초향 종자의 P85는 이러한 프로세스의 최적화의 기준으로 활용 가능할 것으로 사료된다.

Keywords

References

  1. Cochrane JA, AD Crawford and LT Monks. 2007. The significance of ex situ seed conservation to reintroduction of threatened plants. Aust. J. Bot. 55:356-361. https://doi.org/10.1071/BT06173
  2. Crawford AD and L Monks. 2009. The road to recovery: the contribution of seed conservation and reintroduction to species recovery in Western Australia. Aust. Plant. Conserv. 17:15-17.
  3. Crawford AD, KJ Steadman, JA Plummer, A Cochrane and RJ Probert. 2007. Analysis of seed-bank data confirms suitability of international seed-storage standards for the Australian flora. Aust. J. Bot. 55:18-29. https://doi.org/10.1071/BT06038
  4. Dickie JB, RH Ellis, HL Kraak, K Ryder and PB Tompsett. 1990. Temperature and seed storage longevity. Ann. Bot. 65:197-204. https://doi.org/10.1093/oxfordjournals.aob.a087924
  5. Ellis RH and EH Roberts. 1980. Improved equations for the prediction of seed longevity. Ann. Bot. 45:13-30. https://doi.org/10.1093/oxfordjournals.aob.a085797
  6. Godefroid S, A Van de Vyver and T Vanderborght. 2010. Germination capacity and viability of threatened species collections in seed banks. Biodiv. Conserv. 19:1365-1383. https://doi.org/10.1007/s10531-009-9767-3
  7. Gold K and F Hay. 2014. Equilibrating seeds to specific moisture levels. Technical Information Sheet_09, Royal Botanic Gardens Kew, UK.
  8. Gold K and K Manger. 2008. Measuring seed moisture status using a hygrometer. Technical Information Sheet_04, Royal Botanic Gardens Kew, UK.
  9. Hay FR, F de Guzman, D Ellis, H Makahiya, T Borromeo and NRS Hamilton. 2012. Viability of Oryza sativa L. seeds stored under Genebank conditions for up to 30 years. Genetic Resources and Crop Evolution.
  10. Hay FR, A Mead, K Manger and FJ Wilson. 2003. One-step analysis of seed storage data and the longevity of Arabidopsis thaliana seeds. J. Exp. Bot. 54:993-1011. https://doi.org/10.1093/jxb/erg103
  11. Hay FR, P Thavong, P Taridno and S Timple. 2012. Evaluation of zeolite seed 'Drying Beads' for drying rice seeds to low moisture content prior to long-term storage. Seed Sci. Technol. 40:374-395. https://doi.org/10.15258/sst.2012.40.3.09
  12. Hay FR and RJ Probert. 2013. Advances in seed conservation of wild plant species: a review of recent research. Conservation Physiol 1.
  13. Hamilton MB. 1994. Ex situ conservation of wild plant species: time to reassess the genetic assumptions and implications of seed banks. Conserv. Biol. 8:39-49. https://doi.org/10.1046/j.1523-1739.1994.08010039.x
  14. ISTA. 2007. Determination of moisture content. in International rules for seed testing The International Seed Testing Association: Bassersdorf, Switzerland.
  15. Lee YH, JY Byun, CS Na, TW Kim, JG Kim and SH Hong. 2015. Moisture Sorption Isotherms of Four Echinochloa Species Seeds. Weed Turfgrass Sci. 4:111-117. https://doi.org/10.5660/WTS.2015.4.2.111
  16. Lingington SK Manger. 2014. Seed bank design: seed drying rooms. Technical Information Sheet_11, Royal Botanic Gardens Kew, London, UK.
  17. Merritt DJ and KW Dixon. 2003. Seed storage characteristics and dormancy of Australian indigenous plant species: from the seed store to the field. in Seed conservation: turning science into practice. Royal Botanic Gardens, Kew. London. UK.
  18. Pritchard HW and JB Dickie. 2003 Predicting seed longevity: the use and abuse of seed viability equations. in Seed Conservation: turning science into practice. Royal Botanic Gardens Kew, London, UK.
  19. Probert RJ. 2003. Seed viability under ambient conditions, and the importance of drying. in Seed conservation: turning science into practice, Royal Botanic Gardens Kew, London, UK.
  20. Probert RJ, MI Daws and FR Hay. 2009. Ecological correlates of ex situ seed longevity: a comparative study on 195 species. Ann. Bot. 104:57-69. https://doi.org/10.1093/aob/mcp082
  21. Rao NK, J Hanson, ME Dulloo, K Ghosh, D Nowell and M Larinde. 2006. Manual of Seed Handling in Genebanks. Bioversity International, Rome.
  22. Roberts EH. 1973. Predicting the storage life of seeds. Seed Sci. Technol. 1:499-514.
  23. Rockland LB and GF Stewart. 2013. Water activity: influences on food quality: a treatise on the influence of bound and free water on the quality and stability of foods and other natural products, Academic Press, New York. USA.
  24. Vertucci CW and EE Roos. 1993. Theoretical basis of protocols for seed storage II. The influence of temperature on optimal moisture levels. Seed Sci. Res. 3:201-213.
  25. Vertucci Christina W and A Carl Leopold. 1987. Water binding in legume seeds. Plant Physiol. 85:224-231. https://doi.org/10.1104/pp.85.1.224
  26. Walters C, LM Wheeler and JM Grotenhuis. 2005. Longevity of seeds stored in a genebank: species characteristics. Seed Sci. Res. 15:1-20. https://doi.org/10.1079/SSR2004195