DOI QR코드

DOI QR Code

Optimization of Tank Model Parameters Using Multi-Objective Genetic Algorithm (I): Methodology and Model Formulation

다목적 유전자알고리즘을 이용한 Tank 모형 매개변수 최적화(I): 방법론과 모형구축

  • Kim, Tae-Soon (School of Civil and Environmental Engineering, Yonsei Univ.) ;
  • Jung, Il-Won (Dept. of Civil and Environmental Engrg., Sejong Univ.) ;
  • Koo, Bo-Young (Namwonkeonseol Engineering Co., Ltd.) ;
  • Bae, Deg-Hyo (Dept. of Civil and Environmental Engrg., Sejong Univ.)
  • 김태순 (연세대학교 사회환경시스템공학부) ;
  • 정일원 (세종대학교 토목환경공학과) ;
  • 구보영 (남원건설엔지니어링) ;
  • 배덕효 (세종대학교 물자원연구소.토목환경공학과)
  • Published : 2007.09.30

Abstract

The objective of this study is to evaluate the applicability of multi-objective genetic algorithm(MOGA) in order to calibrate the parameters of conceptual rainfall-runoff model, Tank model. NSGA-II, one of the most imitating MOGA implementations, is combined with Tank model and four multi-objective functions such as to minimize volume error, root mean square error (RMSE), high flow RMSE, and low flow RMSE are used. When NSGA-II is employed with more than three multi-objective functions, a number of Pareto-optimal solutions usually becomes too large. Therefore, selecting several preferred Pareto-optimal solutions is essential for stakeholder, and preference-ordering approach is used in this study for the sake of getting the best preferred Pareto-optimal solutions. Sensitivity analysis is performed to examine the effect of initial genetic parameters, which are generation number and Population size, to the performance of NSGA-II for searching the proper paramters for Tank model, and the result suggests that the generation number is 900 and the population size is 1000 for this study.

본 연구의 목적은 개념적인 강우-유출모형인 Tank 모형의 매개변수를 산정하기 위한 다목적 유전자알고리즘의 적용성을 평가하는 것이다. 다목적 유전자알고리즘 기법으로는 최근에 가장 많이 사용되는 기법중의 하나인 NSGA-II를 채택하여 Tank 모형과 결합하였으며, 4가지 목적함수(유출용적오차, 평균제곱근 오차, 고수유량 평균제곱근 오차 및 저수유량 평균제곱근 오차)값을 최소화하는 형태의 목적함수를 적용하였다. NSGA-II는 목적함수의 개수가 많아지면 한 번의 실행에 의해 굉장히 많은 수의 파레토최적해를 구하는 단점을 가지고 있기 때문에 구해진 파레토최적해 중에서 어떤 해가 최우선해 인지를 결정해야 할 필요가 있으며, 이러한 고차원적인 의사결정을 위하여 선호적순서화(preference ordering) 기법을 적용하였다. NSGA-II를 이용하여 Tank모형의 매개변수를 추정할 때 초기조건이 최적화과정에 미칠 수 있는 영향을 최소화하기 위해 세대수(generation number)와 개체군의 크기(population size)에 대한 민감도분석을 수행하였다. 분석결과 Tank모형의 매개변수 최적화를 위한 세대수와 개체군 크기의 초기 값을 각각 900번과 1000개로 선정하는 것이 적합한 것으로 나타났다.

Keywords

References

  1. 건설교통부 (2000). 수자원장기종합계획(water vision 2020) 보고서
  2. Das, I. (1999). 'A preference ordering among various Pareto optimal alternatives', Structural and Multidisciplinary Optimization, Vol. 18(1), pp. 3035 https://doi.org/10.1007/BF01210689
  3. Deb, K, Pratap, A., Agarwal, S., and Meyarivan, T. (2002). 'A fast and elitist multiobjective genetic algorithm: NSGA-II', IEEE Transactions on Evolutionary Computation, Vol. 6(2), pp. 182-197 https://doi.org/10.1109/4235.996017
  4. Duan, Q. (1991). A global optimization strategy for efficient and effective calibration of hydrologic models, PhD dissertation, University of Arizona, Tucson
  5. Duan, Q. (2002). 'Global optimization for watershed model calibration', Calibration of Watershed Models, Q. Duan, H. V. Gupta, S. Sorooshian, A. N. Rousseau, and R. Turcotte, eds., American Geophysical Union
  6. Goldberg, D.E. (1989). Genetic algorithms in search, optimization & machine learning, Addison Wesley, Reading, Massachusetts
  7. Gupta, H.V., Sorooshian, S., and Yapo, P.O. (1998). 'Toward improved calibration of hydrologic models: Multiple and noncornmensurable measures of information', Water Resources Research, Vol. 34(4), pp. 751-763 https://doi.org/10.1029/97WR03495
  8. Holland, J.H. (1975). Adaptation in natural and artificial systems, University of Michigan Press
  9. Khu, S. T., and Madsen, H. (2005). 'Multiobjective calibration with Pareto preference ordering: An application to rainfall-runoff model calibration', Water Resources Research, Vol. 41(3), W03004, doi:10.1029/2004WR003041
  10. Madsen, H. (2000). 'Automatic calibration of a conceptual rainfall-runoff model using multiple objectives', Journal of Hydrology, Vol. 235(3-4), pp. 276-288 https://doi.org/10.1016/S0022-1694(00)00279-1
  11. NeIder, J.A., and Mead, R.A. (1965). 'Simplex method for function minimization', Computer Journal, Vol. 7, pp. 308-313 https://doi.org/10.1093/comjnl/7.4.308
  12. Srinivas, N., and Deb, K. (1994). 'Multiobjective optimization using nondominated sorting in genetic algorithms', Evolutionary Computation, Vol. 2(3), pp. 221-248 https://doi.org/10.1162/evco.1994.2.3.221
  13. Sugawara, M. (1995). 'Tank model', Computer Models of Watershed Hydrology, Singh, V.J., ed., Water Resources Publications, Highlands Ranch, CO
  14. Tolson, B.A., and Shoemaker, C.A. (2007). 'Dynamically dimensioned search algorithm for computationally efficient watershed model calibration', Water Resources Research, 43(1), W01413, doi:10.1029/2005WR004723
  15. Van Veldhuizen, D.A., and Lamont, G.B. (2000). 'Multiobjective evolutionary algorithms: Analyzing the state-of-the-art', Evolutionary Computation, Vol. 8(2), pp. 125-147 https://doi.org/10.1162/106365600568158
  16. Vrugt, J.A., Gupta, H.V., Bastidas, L.A., Bouten, W., and Sorooshian, S. (2003). 'Effective and efficient algorithm for multiobjective optimization of hydrologic models', Water Resources Research, Vol. 39(8), 1214, doi:10.1029/2002WR001746
  17. Yokoo, Y., Kazama, S., Sawamoto, M., and Nishimura, H. (2001). 'Regionalization of lumped water balance model parameters based on multiple regression', Journal of Hydrology, Vol. 246(1-4), pp. 209-222 https://doi.org/10.1016/S0022-1694(01)00372-9

Cited by

  1. Parameter Estimation of a Distributed Hydrologic Model using Parallel PEST: Comparison of Impacts by Radar and Ground Rainfall Estimates vol.46, pp.11, 2013, https://doi.org/10.3741/JKWRA.2013.46.11.1041
  2. Assessment of Rainfall-Sediment Yield-Runoff Prediction Uncertainty Using a Multi-objective Optimization Method vol.43, pp.12, 2010, https://doi.org/10.3741/JKWRA.2010.43.12.1011
  3. Comparison of Estimating Parameters by Univariate Search and Genetic Algorithm using Tank Model vol.51, pp.3, 2009, https://doi.org/10.5389/KSAE.2009.51.3.001
  4. Impact Assessment of Spatial Resolution of Radar Rainfall and a Distributed Hydrologic Model on Parameter Estimation vol.34, pp.5, 2014, https://doi.org/10.12652/Ksce.2014.34.5.1443
  5. Application of multi-objective genetic algorithm for waste load allocation in a river basin vol.22, pp.6, 2013, https://doi.org/10.14249/eia.2013.22.6.713
  6. Comparison of Natural Flow Estimates for the Han River Basin Using TANK and SWAT Models vol.45, pp.3, 2012, https://doi.org/10.3741/JKWRA.2012.45.3.301