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ABSTRACT

We consider the throughput-maximization problem for both the up- and downlink in a wireless network with
interference channels. For this purpose, we design an iterative and distributive uplink algorithm based on
Lagrangian relaxation. Using the uplink power prices and network duality, we achieve throughput-maximization in
the dual downlink that has a symmetric channel and an equal power budget compared to the uplink. The
network duality we prove here is a generalized version of previous research [10}, [11]. Computational tests show
that the performance of the up- and downlink throughput for our algorithms is close to the optimal value for the
channel orthogonality factor, #<(0.5,1]. On the other hand, when the channels are slightly orthogonal
(6(0,0.5]), we observe some throughput degradation in the downlink. We have extended our analysis to the
real downlink that has a nonsymmetric channel and an unequal power budget compared to the uplink. It is
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shown that the modified duality-based approach is thoroughly applied to the real downlink. Considering the
complexity of the algorithms in {6] and [18], we conclude that these results are quite encouraging in terms of
both performance and practical applicability of the generalized duality theorem.

I.M B

As wireless systems increasingly provide data
services, intensive study has been done in rate
control and packet scheduling, which are usually
combined with link adaptation in the physical
layer. In particular, there has been significant
progress in the downlink side, of which excellent
examples are CDMA-HDR [1] and HSDPA [2]
[3]. On the other hand, research in the uplink is
unsatisfactory, in the sense that we cannot find
any practical implementation except for HSUPA
[4]. One major reason for this is that it is rather
difficult to coordinate multiple transmitters
(mobiles) in an optimal way, even if there are
theoretical results on uplink rate control [5]-[10].

Throughout this paper, our objective is to
maximize the uplink throughput, iteratively and
distributively. For this purpose, we have applied
the Lagrangian relaxation (LR) technique [11] and
have developed a heuristic algorithm. Applying
LR to the uplink power/rate control was first
cartied out by Kim et al [5]. However, the
algorithm provided in [5] considered that the rate
of each mobile is a linear function of the
signal-to-interference-plus-noise ratio (SINR). In
[6]-{7], the authors considered the uplink
throughput-maximization problem, in which the
rate of each mobile is chosen to be a logarithmic
function of the SINR, ie., Shannon -capacity.
However, the algorithms proposed in [6]-[7] have
a centralized property that causes high complexity
for the base station to perform power/rate control.
In (8], an uplink power control problem was
formulated as a non-cooperative game where users
aim selfishly at maximizing their utility-based
performance. The existence of a Nash equilibrium
point of each proposed game was proven, but
such a nash equilibrium point may not achieve
the throughput maximization for the uplink

system. In [9], the problem of sum rate
maximization was solved approximating the rate
funcntion as log(SINR). Although this leads
sum-rate maximization problem to a convex
problem, the approximation can be seriously
erroneous under low SINRs. The authors in [10]
also consider the power optimization problem
maximizing the sum rate, but the assumption that
the interfering links are symmetric is critical.
When referring to the duality in the wireless
network, we may naturally focus on the two
communication directions: uplink and downlink.
For this issue, there are two stimulating papers.
The achievable capacity region of the uplink of a
snapshot wireless network is mostly determined by
the maximum transmittable power of each mobile.
An interesting experiment is to vary such
maximum transmittable power of each mobile
while the total transmission power of all the
mobiles is fixed to a constant, say Q, and to see
how the capacity region varies. In [12], the
authors showed that the trace of the capacity
region of the uplink (i.e., multiple access channel,
MAC channel) collectively constitutes the capacity
region of the downlink (i.e., broadcasting channel,
BC channel), where the total power of the base
station has an upper limit of Q. There are two
important assumptions in [12]. The first
assumption is that the channel gains are
symmetric between the wup- and downlink.
Secondly, the authors in [12] assume successive
interference cancelation (SIC) in the receivers of
mobiles and the base station, and the order of
interference cancelation is completely reversed in
the up- and downlink. A similar network duality
is also presented by [13], in which spectral radius
analysis was used. In [13], their analysis is rather
general in the sense that the SIC was not
assumed. However, what is missing in the
analysis is that they did not consider the upper
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bound of the transmission power in the uplink.

The main purpose of this paper is threefold.
First, we introduce an iterative and distributed
uplink throughput-maximization algorithm which
was proposed in our past work [14]. In this
paper, we additionally prove the convergence of
the algorithm. Second, we explain the duality
properties for general wireless networks in [14].
This generalization is related to the question of
how the duality theorem holds when the
assumptions of SIC [12] and unlimited uplink
power budget [13] are removed. We have proven
that the duality between the MAC and BC
channels still holds under such general conditions.
Based on this, we move to the design of
downlink throughput-maximization, which can be
established from the uplink Lagrange multipliers
(i.e., power price or power sensitivity) on each
mobile and applying the network duality theorem.
Third, we compensate the network duality gap in
the downlink when there exist nonsymmetric
channels and different power budgets between the
up- and downlink. We have compared the
performance of the up- and downlink throughput
of our algorithms with that of [6] (uplink) and
[15] (downlink), especially when the network
duality gap exists or not in the downlink. The
results are quite encouraging in terms of both
performance and practical applicability of the
generalized duality theorem.

The remainder of this paper is organized as
follows. In the next section, we describe the
problem definition of the wuplink throughput-
maximization and apply LR to this problem. In
Section I, we present a distributed uplink power
control algorithm and prove the convergence of
this algorithm. In Section IV, we prove the
generalized network duality theorem and apply it
to the downlink throughput-maximization problem.
In Section V, we introduce the network duality
gap. The numerical results are given in Section
VI, which is followed by the concluding remarks
of Section VL.
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. System Model and Lagrangian
Relaxation

2.1 System Model

Consider an isolated single cell of a cellular
radio system where N mobiles are active. In the
uplink, each mobile i (1 <¢< /N) can transmit
with power 0 < p, SE, where 17, is. the
maximum transmittable power of mobile i. We
consider a short time interval such that the link
gain between each mobile i and the base station
is stationary, symmetric and given by g,
(1<i<N). The received signal-to-interference-
plus-noise ratio (SINR) of mobile i, is defined as:

9:0;

Z(P)=—v i=1,-N,
k 4 M
0,90+ v
j=Ti=i
where the vector P=(p,) denotes the

N-dimensional power vector and the positive value
v is background noise. The quantity 6,,E (0,1] is
the normalized cross-correlation between p; and
p; at the receiver of the base station; that is the

effective fraction of the received signal power
from transmitter j that contributes to the
interference experienced by mobile i. For example
in a DS-CDMA system, the spreading sequences
can be chosen to be orthogonal, Gij =0 for i j,
but in reality some positive correlation will occur
due to multipath propagation. Throughout the
paper, we exclude the case of no intracell
interference, which would make intracell
coordination unnecessary.

The wuplink throughput-maximization problem

can be formulated as the following problem:

Problem (A):

z=max ZNJT(%(P)) )]
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s.t. 0<p, <ppi=1.,N, 3

where the function (v, (P))=1log(1+~,(P))
defines the one-to-one relationship between an
SINR and a data rate. In this paper, we choose
the function 7 to be the Shannon capacity, an
upper-bound on the maximum amount of
error-free information that can be transmitted over
a communication link using an appropriate coding.
Without loss of generality, we assume that the
base of the logarithm function in the channel
capacity is the natural number.

2.2 Lagrangian Relaxation
Introducing nonnegative Lagrange multipliers

AERY, we can form the following Lagrangian
function of Problem (A):

N p—
2/\1' (Pi_pi)~ )]

N
E (% (P))+
i=1 i=1

Then a Lagrangian relaxation problem for a
given X is given by:

g(X) =maxp, (L(P)), 5
of which the Lagrangian dual problem is:
w=min, 5 ,g{A). ©6)

The objective function in Problem (A) is
neither convex nor concave with respect to P
[6], [15]. Therefore, we cannot say that the strong
duality theorem (z=w) holds [16], and it is
believed that » < w.

Let us now focus on the Lagrangian relaxation
problem (5). The rate of mobile i depends on not
only its own power allocation but also the power
allocations of all the other mobiles. Power
increment of mobile i increases its own rate,
while decreasing the rate of all the others due to
the interference. Thus the first order derivative of
the Lagrangian function, with respect to p, is the

sum of the two:

) ) gp; t4+v
0_pi r(y,(P)}= o, {108( T+v )
9
= 7
g+ tv @
p.+IL+v al
D (P)) =2 {log(ﬁﬁ% }_J
Bpi ol [ +v ap;
1 1
_eijgi(gjpﬁé_ﬂ §+v)’ ®)
N
where the term [ = 2 8,,9p; denotes the
j=1Lj#1

interference perceived by mobile i. Equation (7) is
the derivative of mobile i’s rate with respect to
p; and Equation (8) denotes that of mobile j’s
rate. Then the Karush-Kuhn-Tucker necessary
condition of the problem (5) is reduced to finding
the nonnegative power value that makes the sum
of (7) and (8) equal to A;:

|t
= | A ©)
* A4 9
where p? denotes the (local) optimal power of

mobile i for the problem (5) and the function
[z]" =max{z,0}. In (9),
power is determined by two control variables, i.e.,

the (local) optimal

power price and system price. The power price of
mobile i represented by the Lagrange muitiplier,
A;, is defined as the penalty that mobile i has to
pay for unit power increment. The system price is
defined as follows:

u 1
. (10
j §¢, “gl [+u gjpj-f-lj-i-u) (10)

The system price of mobile i, A, means the
effect of interference caused by the transmission
of mobile i to the overall system. Therefore, the
transmission power is inversely proportional to the
sum of both the power price and the system
price. The updates of both the power and system
price are described in the next section.
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II. Distributed Uplink Power Control
Algorithm

Our Distributed Uplink Power Control (DUPC)
algorithm consists of iterations of three major
steps as follows:

Step 0. Initialization
Set k=0 and arbitrary nonnegative initial
values of p¥ and AF.

Step 1. Power update

+
K+l _ 1 Ftv
i - P P - | » (11)
A+ A 9;
k+1 . . .
where p; is a virtual transmission power of
mobile i.

Step 2. Power price update
M= [DE—ob o (p—pt )], 12

where of denotes a sequence of positive step
sizes.

Step 3. Power truncate

Pl =min{pf*\p}, (13)
where pf%Y is an actual transmission power of

mobile i.

Step 4. Repetition
Set k=k+1 and go to Step 1.

The base station determines the system price of
each mobile by calculating the received
information for a given time slot. In Equation
(11), the system price of mobile i in the k-th
time slot is calculated as:

882
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! ;l “gl(ljk+1/ gjpf-i-l;c-l-u) (14

N
where If=l %3# 4¢9qume){ is the intra-cell
=Lt=7

interference at the base station caused by mobile
j’s actual transmission. In the next time slot, each
mobile is informed of the system price by the
base station.

The power price, \; is required to determine
the transmission power of each mobile. The
projected subgradient method is known to generate
solutions converging to optimal \%‘ of the dual
problem (6) (see [17] and references therein). In
the subgradient method, a step-size sequence {o*}
is needed to update A, to the negative subgradient
direction for the minimization problem (6), more
specifically Step 2. When the norm of the
subgradient is bounded, the projected subgradient
update is guaranteed to converge to the optimal
dual solution, g(A\) for the problem (6) as long
as Y,a"=oc0 and lima*=0 [17]. Our update

k=1 koo
algorithm selects the following choice [18]:

k

=B
ot =7 (15)

where (3 is some positive constant.

Finally, we need to modify the iterative
algorithm to take into account the presence of the
primal constraints, ie., p;, < E Step 3 of DUPC
introduces a projection method [19]. The projected
algorithm selects the “closest® point in the primal
constraint, when the virtual transmission power is
out of the primal constraint. The convergence of
DUPC is described as the following proposition.

Proposition 1: Assume that there is only one
mobile updating its power according to (11) at
each iteration.. Then, for arbitrary nonnegative
initial values of power, DUPC guarantees
convergence to a unique equilibrium point.
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Proof: The objective function (2) can be
decomposed into two components according to
each mobile i, i.e., the rate of mobile i and the
sum rate of all the others. The rate of mobile i
is a monotonically increasing and concave
function with respect to the transmission power of
mobile i, p;, while the sum rate of all the others
is a monotonically decreasing and convex function
of p;. This implies that the Concave-Convex
Procedure (CCCP) can be applied to the problem
(5) [20]. The power update procedure (11) is in
fact a CCCP algorithm given by:

3(;, {r(y GE L) + X (o=~ ) }
Ar p—
— Skt ) XG5 a0
1T \JF1

where p_; represents the power vector except
for the power of mobile i, ie.,
p_; = (Pypo i 1sD; 1 spy). It is  assumed
that p_, is fixed during the power update of
mobile i. The left hand side of Equation (16) is
the concave part of the Lagrangian function (4),
while the right hand side is the convex part. In
[20], Theorem 2 shows that the CCCP algorithm
is guaranteed to monotonically increase the
objective function that is composed of a concave
part and a convex part and hence to converge to
a maximum or saddle point of the objective
function. In other words, the iterative CCCP
algorithm (16) guarantees that the objective
function monotonically increases as follows:

Mz

{ (7, (" ) + X (o= 1) }

—

N

g (1t ) + 3N (o

= NEE)

+ A (p,—pf 1), an

There is slight difference between (11) and

(16). In (11), there is a projection procedure that
sets the negative power value to zero. However,
this difference will not make any change in our
proof (i.e., the monotonicity of (11)). Assume
now at iteration k-+1, mobile j updates its
power according to (11). Using this one-by-one
update, we approach to the (local) optimal
solution of the function (4), if the objective
function is upper-bounded (which is our case).

So far, we have assumed that the power price
of each mobile, ). is fixed to a constant value.

However, it is varying according to (12). Since

the step size ot

of the update procedure (12)
converges to zero, the power price of each
mobile converges to a constant value after some
iterations. So, the assumption of constant power
price is reasonable.

In Step 3 of DUPC, the transmission power of
each mobile is constrained by the maximum
transmittable power in the wuplink. Since the
projected algorithm selects the “closest” point in
the power truncation, the actual transmission
power is the most adjacent value of the (local)
optimal power to the problem (5) in the feasible
region. Therefore, the monotonically increasing
property of the CCCP algorithm is not changed,
and the above convergence proof is well defined

regardless of power truncation.

The above proposition says that DUPC
converges to a near optimal power vector of
Problem (A), only if the power update of each
mobile is done in the one-by-one fashion (i.e.,
one mobile per slot). One-by-one assumption is
rather strong and may not be true in real
situations. The question is how the convergence
of DUPC when multiple mobiles update their
power simultaneously. In Section VI, we
numerically show the convergence of this case,
answering this question.

Practical implementation of DUPC can be
done for both the base station and mobiles, which

can be described as follows:
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BS Algorithm
Step 0. Set k= 0.

Step 1. Using the received information, estimate
‘the system price A/, interference IF and channel

gain g, for each mobile i.

Step 2. The above feedback is informed to
each mobile.

Step 3. Set k=k+ 1 and go to Step 1.
MS Algorithm For each mobile i, i=1,2,---,N

Step 0. Set k=0 and arbitrary nonnegative

initial values of p} and AL,

Step 1. Assume that the -system price Aik,

interference Iik and channel gain g; are informed

from the base station.

Step 2. Power update : Select the transmission
power, p*™! using (11) and (13).

Step 3. Power price update : Update Af'!

using (12).
Step 4. Set k=k+ 1 and go to Step 1.

IV. Downlink Throughput -Maximization
Using the Up- and Downlink Duality

In this section, we introduce our up- and
downlink duality theorem that establishes a basis
for the downlink throughput-maximization problem
given by:

Problem (B):
N
max »,7(v(Q)) (18)
i=1

884

N

st 3,4,<Q (19)

i=1

@=(g;) denotes the
N-dimensional power vector of the downlink and
the function r is the same as in Problem (A).
The difference between Problems (A) and (B) is
in the power constraints. In the uplink case (A),

the transmission power of each mobile is

where the vector

individually constrained, ie., p; < p,, i=1,2,--,N.
On the other hand, the sum of the transmission
power is constrained in the downlink problem

N —_—
®), ie., Y0 < Q.
i=1

When the channels do not change too rapidly,
link gains on the up- and downlink are identical.
If we assume that the orthogonality factor and
thermal noise in both systems are the same, the
SINR received by mobile i in the downlink is
defined by:

9:4;

N
0 Z 9.4, tv
j=li=i

%(Q) = sl N o

The power prices of DUPC give a hint about
the optimal transmission power of Problem (B)
based on the up- and downlink duality.

Proposition 2: If we assume that the sum of
the maximum transmittable power in the uplink is
the same as the power constraint of the downlink,

N— —
ie., 2 p;= @, the extreme point of the uplink
i=1

rate-region traces a boundary point of the

downlink rate-region by varying the maximum

transmittable power of each mobile in the uplink.
Proof: Solving (1) for p;, we have [21]:

v . Y
g:(1+6y)" 1)

»= N
I_Eﬂ_
=1 1+0y
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for ¢=1,--,N. In the above, since 0 <p, < ;i,
the SINR +, varies according to this power
range. Noting that the instantaneous rate of
mobile i is a function of <y, we can draw the
rate region of mobile i within 0 <p, < E
Intersections of such rates for each mobile

composes the feasible rate region of the uplink
Problem (A).

When each mobile transmits with the maximum
power in the uplink, ie, p,=p, i=1,2,,N,
the SINR received by mobile i is denoted as ?L

and the instantaneous rate lies on an extreme
point of the uplink rate-region. The maximum
transmission power is denoted as follows:

— ai v
pl= —N—-—— . 9_’
99 22
1- 3o
j=1
UL
UL 6
where o/ =———== has a one-to-one
1+~

relationship with the rate of mobile i in the
uplink.
Moving to the downlink case, we have [15]:

foie
N =y Sl T
Ya= 23)
i=1 & By,
i= _2 '
=il+oy
N

With the constraint of Eqi < @, we can draw
i=1

the rate region of the downlink Problem (B)
using the above equation. If the sum of each
mobile power is the same as the power

N

constraint, i.e., E(k = (), the instantaneous rate
i=1

lies on a boundary point of the downlink

rate-region. When the SINR received by mobile i

on the boundary point is defined as ?L, the

power constraint of the downlink is denoted as
follows:

=@ @4

- I iL
where afL=—7’;—

1+6~47%
relationship with the rate of mobile i in the
downlink.

If we assume that the sum of the maximum

has a one-to-one

power that can be transmitted by each mobile in
the uplink is the same as the power constraint of

N— —
the downlink, ie., Z p;= ), the following
i=1

condition has to be satisfied by using Equations
(22) and (24):

From the above condition, o and aiDL,

which have one-to-one relationships with the
extreme point in the uplink or a boundary point
in the downlink, are equal. Therefore, the extreme
point of the uplink rate-region lies on a boundary
point of the downlink rate-region. If we vary the
maximum transmittable power of each mobile,
while the total transmission power of all the

mobiles is fixed to a constant, Z), the boundary
of the downlink rate-region is obtained with the
set of extreme points in the uplink.

As mentioned, the Lagrange multipliers, A;, can
be interpreted as power prices of mobile i. If we
have A, > ),, the power constraint 171 is more
restrictive than 172, that is, increasing 171 while
decreasing 172 by the same amount would lead to

an increase in the sum rate of the uplink. On the
other hand, if all power prices are equal, each
power constraint is equally hard and no tradeoff
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of power constraint between different mobiles
would increase the sum rate.

In [12], the authors introduced channel scaling
to force the power prices to be equal. Channel
scaling is used to derive that the capacity region
of the uplink can be characterized in terms of the
capacity region of the dual downlink. Here, the
dual downlink means that the channel gains are
symmetric between the up- and downlink and the
power constraint is the same as the sum of
uplink power constraints. In channel scaling, the
channel gain is scaled by a component of the
positive scaling vector, p=1(g;), such as pg,. If
A; is the power price of mobile i for the
unscaled uplink, then p.\; is the power price for
the uplink scaled by p=/(y,). Therefore, we can
scale the channel appropriately so that u)\, are

equal for all mobile i as follows:
1Ay = pgdg == ppd (26)

The scaling of the channel and the power
constraint clearly negate each other in the uplink.
In other words, the power constraint of each
mobile is reciprocally scaled by a component of
the scaling vector. In channel scaling, the sum of
the transformed power constraint has to be held
to a constant as follows:

—~ x
ﬂ_}_ &.{_ p_= 2 B 27

The uplink power constraints that are reciprocally
scaled in Equation (27), are the same as the
downlink transmission powers that maximize the
-sum rate in the dual downlink. If we assume

3

N —
p;= @), every extreme point of the uplink
=1

rate-region scaled by some scaling vector can be
shown to be on a boundary of the dual downlink
rate-region by Proposition 2. When we exactly
select a scaling vector, u=(u;) to satisfy Equations
(26) and (27), each scaled power constraint,

171-/ 4;, can maximize the sum rate of the dual

886
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] s v 18 2 28 3
Rate of mobile 1

Fig. 1. Rate region of the up- and downlink system. The
inner solid line represents the instantaneous rates of two
mobiles in the uplink, while the outer solid line represents
those in the downlink. The dots represent the iterative
sequences from the DUPC algorithm

downlink. Using Equations (26) and (27), the
transmission powers of the dual downlink are
calculated as follows:

M —_—
- lei)‘i
where p; = ——.

B 2% Z)Ai

@28

Example 1: For two mobiles, we can draw the
up- and dual downlink rate region as in Figure 1.
We apply the up- and downlink duality to the
downlink power allocation problem. As shown in
Figure 1, the simultaneous transmission of two
mobiles is the optimal strategy in the uplink to
maximize the total throughput. DUPC has iterative
points that are represented by the dots. It is
shown that the sequence of these points converges
into the optimal point that maximizes the sum
rate of two mobiles in the uplink. By Equation
(28), we can find the optimal transmission power
of two mobiles in the dual downlink for a given
optimal power price of the uplink. The throughput-
maximization point of the dual downlink is
represented by the diamond point in Figure 1.

V. Network Duality Gép

So far, we assume that the channels between
the up- and downlink are symmetric and the sum



T FAReA ) At a2 A 4dE 849 B4d S Hds oy

of the uplink power constraints is exactly the
same as the downlink power constraint. Under
this assumption, the downlink based on the up-
and downlink duality property is defined as the
dual downlink. The transmission powers of the
dual downlink are obtained by using the channel
scaling method (28). However, the downlink in
the practical system has a nonsymmetric channel
and an unequal power budget compared to the
uplink. In this papér, it is defined as the real
downlink, in which the channel scaling method
(28) cannot maximize the throughput. We denote
the throughput difference between the dual and
real downlink as network duality gap. The
network duality gap is determined by two factors,
i.e., nonsymmetric channels and different power
budgets.

When the sum of the uplink power constraints
is not exactly the same as the downlink power
constraint, the extreme point of the uplink
rate-region does not lie on a boundary point of
the downlink rate-region. Therefore, we have to
compensate the network duality gap to obtain the
exact transmission powers of the real downlink. If

N_ f—

we assume that E p=pQ, p is a positive

=1

constant value that represents the difference of

the power budgets between the up- and downlink.
N_ p—

We simply substitute E p; with p@ in Equation
i=1

(27) to compensate the network duality gap as

follows:

- —
LN -0 (29)
My Hy Hy

We denote the up- and downlink channel gains
of mobile i as g’ and g7, respectively. When
the channels between the up- and downlink are
nonsymmetric, i.e., gi’”“ = giDL, we have to force

the power prices to be equal considering the
network duality gap. Therefore, we appropriately
select a scaling vector as follows:

e o e

1 2

MM = A= = kv (30)
1 92 9N

If we assume that the channels are symmetric
between the up- and downlink, ie. g7 = g™, the

above condition (30) is exactly equal to (26) of

the dual downlink. We have multiplied the scaled
gr

power price of each mobile i by to

2
k2
compensate the difference of channel gains
DL
i
UL
i

the downlink power of ¢, for the real downlink

will be larger than the one for the dual downlink

DL

. . k3

in proportional to — .
i

between the up- and downlink. If

>1, then

Due to the network duality gap, the component
of channel scaling vector, u = (,ui) is changed

by using Equations (29) and (30) as follows:

ﬁ_
€N
_ i=1p 31

- Paﬁi/\i 7

(3

DI
9;

where €, = denotes the ratio of the

L UL
i

channel gains between the up- and downlink.
Using the modified channel scaling vector (31),
we can calculate the transmission powers of the
real downlink, not the dual downlink. In the next
section, we apply this modified channel scaling
method (31) to the downlink that has a different
channel gain and power budget compared to the
uplink. We will numerically compare the
performance difference, when the network duality

gap exists or not.
VL. Numerical Results

For simplicity, we assume that 6,,=6>0 for

all i and j. We provide some simulation results to
illustrate  the performance of DUPC. The
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simulation environment is considered to be an
isolated single cell of a DS-CDMA system. The
cell has a radius of 1Km. For a given instance, a
total of 10 mobiles are generated, the locations of
which are randomly distributed over the cell. The

link gain g; is modeled as g,=s, « d; %,
where s; is the shadow fading factor and d; is

the distance between the base station and mobile
i. The log-normally distributed s, is generated
according to E[s;] =0 dB and 02(si)=8 dB.
The power constraint of each mobile is the same
as 30 dBm, and the thermal noise power is -70
dBm.

Firstly, we consider the orthogonality factor,
#=0.1. With 5 mobiles deployed, Figures 2 and
3 respectively show the convergence of the power
and the power price (Lagrange multiplier) for
each mobile under the DUPC algorithm, starting
from arbitrary nonnegative initial values. Here, we
select 5=0.7 for the step size in (15). For a
given instance, Figure 2 describes that the
opportunistic transmission in which only the best
mobile transmits, is the optimal strategy in the
uplink. When one mobile transmits with the
maximum transmittable power, the optimal power
prices of the others have zero values. By
Equation (28), all mobiles except the best mobile
have zero power in the downlink.

—6—moble 1|
—0—mobile 2 |
i QDS 3 |
e mobile 4 !

14} | —¥-—-mobile 5 |

@

12}

Power (mW]

8 0
Number of teration

Fig. 2. Convergence of the power. Each curve corresponds
to the power or the price for each mobile
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Therefore, the mobile that has the best channel
gain is the only one that transmits in - the
downlink according to the up- and downlink
duality. Unlike Figures 2 and. 3, there is a
scenario where the simultaneous transmission of
some mobiles is the optimal strategy in the
uplink. In this case, the simultaneous transmission
of some weak mobiles has better performance
than the opportunistic transmission due to large
interference from the best gain mobile. If we
determine the allocated downlink powers by
Equation (28), the simultaneous transmission -of
some weak mobiles is also the strategy in the
downlink, even if the power allocation is different
from the uplink.

Next, we compare the performance of DUPC
with that of power allocation proposed by
Kumaran and Quian [6]. The Kumaran and Quian
algorithm, the K&Q algorithm for short, has the
property that each transmitting mobile transmits at
the full power, ie., p, =0 for some subset S of

the mobiles and p, =]7i for the complementary

set S. This algorithm maximizes the sum rate of
all mobiles, only if the orthogonality factor is
6<(0.5,1]. However, it is a centralized algorithm
that determines the optimal transmitting mobile set
from the full enumeration of all mobiles. As the
number of mobiles increases, the complexity
grows dramatically.

$ | =©— mobile 1

14 | =@~ mobile 2 |
st ri0blE 3
iy pObile 4
wiipme mabile 5 |

Power price (Lagrangian multiplier)
o

8 0
Number of teration

Fig. 3. Convergence of the power price (Lagragian
multiplier). Each curve corresponds to the power or the
price for each mobile
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Fig. 4. Compatison of the Kumaran and Quian algorithm
and DUPC algorithm in the uplink

We use the efficiency as a
performance measure, i.e., Shannon capacity with
normalized bandwidth. We have performed 20,000
simulations to achieve the average spectral

spectral

efficiency in Figures 4-6. For a given
orthogonality ~factor, Figure 4 describes the
difference between the spectral efficiency of the
K&Q algorithm andDUPC. DUPC has about 97%
performance compared with the K&Q algorithm in
the uplink. Therefore, it has not only a
“distributive” advantage, but it also has almost the
same performance compared with the optimal
value for the orthogonality factor 6€ (0.5,1]. As
we mentioned earlier in Section II, the objective
function of the uplink Problem (A) is neither
convex mnor concave, and finding the global
optimal solution requires full enumeration of all
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Fig. 5. Comparison of MPA-1 algorithm and duality-based
algorithm in the dual downlink
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Fig. 6. Comparison of MPA-1 algorithm and modified
duality-based algorithm in the real downlink

local optimal solutions, which is of combinatorial
behavior. Therefore it is rather hopeless to try to
find the global optimal solution in a reasonable
amount of time. We numerically show that DUPC
converges to a unique point. The convergence
point may not exactly coincide with one of the
local optimal solutions due to violation of the
Karush-Kuhn-Tucker  necessary  condition  of
Problem (A). Nevertheless, DUPC has quite an
encouraging result, as shown in Figure 4.

Based on the up- and downlink duality, we can
determine the transmission power allocated in the
dual downlink, which has a symmetric channel
and an equal power budget compared to the
uplink. This duality-based algorithm does not need
another separate power allocation algorithm in the
downlink, but directly calculates the transmission
power by using the power prices from the uplink.
We compare the performance of the duality-based
algorithm with the MPA-1 algorithm, an efficient
heuristic algorithm proposed in [15]. In Figure 5,
our duality-based algorithm compared with the
MPA-1 algorithm has about 96% performance for
the orthogonality factor 4 (0.5,1], and about
93% performance for 6<(0,0.5]. Therefore, the
duality-based  algorithm has not ‘only a
“impleness”, but it also has almost the same
performance  for the  orthogonality  factor
0=(0.5,1]. Some throughput degradation under
6<(0,0.5) shows that inaccurate power prices
will decrease the system throughput more than in
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the case of #=(0.5,1].

Finally, we consider the real downlink that has
a nonsymmetric channel and an unequal power
budget compared to the wuplink. The power
constraint of the real downlink is set to as 2
times as the sum of 10 uplink power constraints
for the simulation. The shadow fading factor of
channel gain in the real downlink is newly
generated, while the location of each mobile is
fixed to that in the uplink. In Section V, we
have established the modified channel scaling
method (31) to compensate the network duality
gap. Using this method, we can find the
transmission power allocated in the real downlink.
Figure 6 shows that the duality-based algorithm
has about 90% performance compared to the
MPA-1 algorithm in the real downlink. Since the
modified channel scaling method (31) have been
developed as a heuristic algorithm, the modified
algorithm has more performance gap compared to
MPA-1 algorithm in the real downlink than the
dual downlink as shown in Figures 5 and 6.
However, it is a slight performance gap of about
4%.

VI Conclusions

In this paper, we considered throughput-
maximization problems for both the up- and
downlink by choosing a feasible power allocation
of each mobile. To approach the optimal solution,
we proposed a DUPC algorithm in the uplink.
DUPC has about 97% performance compared with
the K&Q algorithm, while each mobile
respectively updates its transmission power based
on the measurement feedback from the base
station.

We extended the duality properties to the
general wireless network. The up- and downlink
duality was shown in a more realistic setting, in
which the assumptions of SIC and unlimited
uplink power budget are removed. Based on this
up- and downlink duality, we solved the
throughput-maximization problem in the dual
downlink that has a symmetric channel and an
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equal power budget compared to the uplink
Compared with the MPA-1 algorithm, our
duality-based downlink algorithm has about 96%
performance  for the  orthogonality  factor
6= (0.5,1] without any additional power
allocation scheme in the dual downlink.
Additionally, we developed the modified channel
scaling method applied to the real downlink that
has a nonsymmetric channel and an unequal
power budget compared to the uplink. It is shown
that the modified algorithm is thoroughly applied
to the real downlink. From the numerical results,
it is found that the proposed throughput-
maximization algorithm for the orthogonality
factor #€(0.5,1] is an attractive method that
not only has almost the same performance as that
of the optimal algorithm, but also has the
advantages of distributiveness and simpleness.
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