• Title/Summary/Keyword: Optimal rotating speed

Search Result 84, Processing Time 0.022 seconds

Theoretical Determination of Optimum Rotating Speed of Desiccant Rotor (이론적 방법에 의한 제습로터 최적 회전속도의 결정)

  • Song, Gwi-Eun;Lee, Dae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.603-608
    • /
    • 2008
  • A simple equation to find a optimum speed of desiccant rotor is presented in this theoretical study. Usually the determination of optimum speed of desiccant rotor requires tedious and lengthy procedures by solving governing differential equations with many complicated parameters. The determining equation of optimal rotating speed is derivated from governing differential equations with three linearization assumptions, which simplify temperature profile linear along the desiccant rotor depth, psychrometric chart within a proper range, and relative humidity-sorption capacity relation. This study shows that the dominant parameters of optimal rotating speed of desiccant rotor are NTU, flow velocity, desiccant rotor depth, and temperature different between dehumidification and regeneration. The comparison shows the good agreement between complicated calculation results and simple theoretical equation prediction.

  • PDF

Shape Optimization of Rotating Cantilever Beams Considering Their Varied Modal Characteristics

  • Cho, Jung-Eun;Yoo, Hong-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.246-252
    • /
    • 2004
  • The modal characteristics of rotating structures vary with the rotating speed. The material and the geometric properties of the structures as well as the rotating speed influence the variations of their modal characteristics. Very often, the modal characteristics of rotating structures need to be specified at some rotating speeds to meet their design requirements. In this paper, rotating cantilever beam is chosen as a design target structure. Optimization problems are formulated and solved to find the optimal shapes of rotating beams with rectangular cross section.

Development of the Altari Radish Pre-processing System for Kimchi Production(III) - Development of the Peeling Device - (김치생산용 알타리무 전처리가공시스템 개발(III) - 삭피장치의 개발 -)

  • Min Y. B.;Kim S. T.;Chung T. S.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.3 s.110
    • /
    • pp.166-171
    • /
    • 2005
  • A prototype peeling device with rotating cutter blades was designed to peel altari radish skin. With the designed blades, the maximum peeling depth increased as the cutter clearance increased but the effect of the peeling speed was not significant. The optimal operating conditions for peeling was; the peeling speed was at 0.19m/s when peeled 2.5 blades/sec and the maximum peeling depth was 1.5mm, the minimum peeling depth was 0.5mm, and the leaf rotating speed was 12 rpm, respectively. In the peeling test fur the optimum operation conditions, with a auxiliary rolling device could adjust the rotational speed of the root uniformly, the altari radishes under 70mm diameter were peeled perfectly.

Optimal Design of Ultracentrifuge Composite Rotor by Structral Analysis (초고속 원심분리기 복합재 로터의 해석 및 최적설계)

  • 박종권;김영호;하성규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.130-136
    • /
    • 1998
  • A procedure of stress and strength analysis has been proposed for the centrifuge rotor of composite materials of quasi-isotropic laminates. The goal in this study is to maximize the allowable rotating speed, that is, to minimize maximum strength ratio with the given path length by changing the geometric parameter-outer radius and ply angles in quasi-isotropic laminates. Optimum values of the geometric parameter-outer radius and ply angles are obtained by multilevel optimization. All the geometric dimensions and stresses are normalized such that the result can be extended to a general case. Two dimensional analysis at each cross section with an elliptic tube hole subjected to internal hydrostatic pressures by samples as well as the centrifugal body forces has been performed along the height to calculate the stress distribution with the plane stress assumption, and Tsai-Wu failure criterion is used to calculate the strength ratio. The maximum allowable rotating speed can be increased by changing the radii of the outer surface along the height with the maximum strength ratio under the unit value : The optimal number of ply angles maximizing the allowable rotating speed in quasi-isotropic laminates is found to be the half number of tube hole, and the optimal laminate rotation angle is the half of $[{\pi}/m]$. A $[{\pi}/3]$ laminate, for instance, is stronger than a $[{\pi}/4]$ laminate for the centrifuge rotor of 6 tube hole number even though they have the same stiffness.

  • PDF

A study on Discharge Characteristics of Rotating Discharge Hole with inlet edge shape (입구 형상에 따른 회전 송출공의 송출특성 연구)

  • Kang, Se-Won;Ha, Kyung-Pyo;Kauh, S.-Ken
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.746-752
    • /
    • 2000
  • A study on discharge characteristics of a rotating discharge hole is very important to enhance the performance of an induction motor which have external forced cooling system. The discharge characteristics of rotating discharge holes are influenced by rotating speed, length-to-diameter ratio, inlet shape of rotor holes, etc. An experimental study on the effect of chamfered inlet edge of rotor inlet part with various depth-to-diameter and inlet chamfered edge angle is conducted. Depth-to-diameter ratios range from 0 to 0.5 and inlet chamfered edge angle range from 0 to 60. As a result, there is an optimal design point of inlet chamfered edge depth. And the inlet edge angle far maximum discharge coefficient is influenced mainly by the rotating speed of discharge holes.

  • PDF

Dynamic Behavior of Rotating Shaft System Corresponding to Operating Modes (운전모드에 따른 회전축계의 동적거동)

  • Kim, Sang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2744-2751
    • /
    • 1996
  • In case of limited power supply, a rotating shaft system may not reach its operating speed that is greater than its critical speed, but the speed oscillates with small ampllitude near critical speed. As a result, it is considered that the operating mode plays an important role in the smooth start of machines. In order to investigate the dynamic behaviors of the rotating shaft system at the beginning stage, one has derived the equations of motion whose degrees of freedom is three, two translations and one rotation. The simultaneous differential equations are numerically solved by using runge-Kutta method, and thus the small time step length could be required corresponding to the stability of solution. Three types of operating modes dependent upon the driving torque rate have been numerically investigated according to the maximum displacement of shaft center. The first type of relation is linear, the second type is composed of two linear curves recommended by machine manufacturer, and the last one is the proposed torque curve reflecting the frequency response curve of one degree of freedom system. For the second type of modes, it is found that the optimal range of intermediate speed to the critical speed lies between 0.8 and 0.9. In addition to that, the maximum displacement can be reduced more if the third type of mode is utilized.

Milling characteristics of cutting-type rice milling machine according to the rotating speed of the main shaft

  • Cho, Byeong-Hyo;Han, Chung-Su;Kang, Tae-Hwan;Lee, Dong-Il;Won, Jin-Ho;Lee, Hee-Sook
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.3
    • /
    • pp.416-423
    • /
    • 2017
  • This study aimed to identify milling characteristics depending on the rotating speed of the main shaft of the cutting-type rice milling machine which can minimize the conventional milling process. Brown rice, which was produced in Gunsan-si, Jeollabuk-do, Republic of Korea, in 2016, was used as the experimental material. The milling characteristics of white rice were measured under four different rotating speeds of main shaft: 950 - 1,050 rpm, 1,000 - 1,100 rpm, 1,050 - 1,150 rpm, and 1,100 - 1,160 rpm. For each shaft speed, 300 kg of brown rice was processed, and the milling characteristics were measured according to the whiteness, grain temperature, cracked rice ratio, broken rice ratio, turbidity, and energy consumption. The whiteness of rice grain was found to be consistent at around $40{\pm}0.5$ only when milled at the shaft speed of 950 - 1,050 or 1,000 - 1,100 rpm. The grain temperature during the milling process increased by 11.35 to $11.85^{\circ}C$, showing little differences amongst shaft speeds. The cracked rice ratio increased by 8.2 to 10.4% at all conditions. The broken rice ratio ranged from 0.58 to 0.76%, reflecting a low level. The turbidity after milling was 54.8 ppm when milled at 1,000 - 1,100 rpm. Energy consumption of 12.98 and 12.18 kWh/ton were recorded at the shaft speed of 1,000 - 1,100 and 1,050 - 1,150 rpm, respectively. The result of this study indicates that the optimal rotating speed of main shaft would be 1,000 - 1,100 rpm for a cutting-type rice milling machine.

Shape Optimization of a Rotating Cantilever Beam Considering Its Modal and Stress Characteristics (회전 외팔보의 진동 및 응력 특성을 고려한 형상 최적화)

  • Yun, Yeong-Hun;Yu, Hong-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.645-653
    • /
    • 2001
  • It is well known that natural frequencies increase when a cantilever beam rotates about the axis perpendicular to its longitudinal axis. Such phenomena that are caused by centrifugal inertia forces are often referred to as the stiffening effects. Occasionally it is necessary to control the variation of a natural frequency or the maximum stress of a rotating beam. By changing the thickness of the rotating beam, the modal or the stress characteristics can be changed. The thickness of the rotating beam is assumed to be a cubic spline function in the present work. An optimization method is employed to find the optimal thickness shape of the rotating beam. This method can be utilized for the design of rotating structures such as turbine blades and aircraft rotary wings.

Shape Optimization of a Rotating Cantilever Beam Considering Its Modal Characteristics (진동 특성을 고려한 회전 외팔보 형상의 최적화)

  • Yun, Young-Hoon;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.643-648
    • /
    • 2000
  • It is well known that natural frequencies increase when a cantilever beam rotates about the axis perpendicular to its longitudinal axis. Such phenomena that are caused by centrifugal inertia forces are often referred to as the stiffening effects. Occasionally it is necessary to control the variation of a natural frequency of a rotating beam. By changing the thickness of the rotating beam, the modal characteristics can be changed. The thickness of the rotating beam is assumed to be a cubic spline function in the present work. An optimization method is employed to find the optimal thickness shape of the rotating beam. This method can be utilized usefully for the design of rotating structures such as turbine blades and aircraft rotary wings.

  • PDF

Development of Rotating Cone Type Garlic Clove Separator (II) - Effect by Clearance between Inner and Outer Frustum - (회전 원추형 마늘 쪽분리기 개발에 관한 연구 (II) - 원추 간극의 영향 -)

  • Lee, J.S.;Kim, K.B.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.2 s.121
    • /
    • pp.77-83
    • /
    • 2007
  • The purpose of this study is to find optimal conditions for various outlet clearances of prototype garlic clove separator with a rotating cone in the constant inlet clearance and cone height. Optimal outlet clearance from medium to small size garlics was 25 mm at the $200{\sim}400rpm$. For large garlic, optimal outlet clearances of Namdo and Uiseong garlic were 34 mm and 37 mm, respectively, in the range of $300{\sim}400rpm$. The proportion of garlic separation was over 95% for all quality of garlics. The proportions of damaged garlics at 25 mm and 28 mm outlet clearances were below 5% and below 10%, respectively. Therefore, in order to maintain high performance of garlic separation for the various varieties and qualities, the rotating cone type separator should be designed with cone speed ranges of $200{\sim}400rpm$ and the outlet clearance ranges of $25{\sim}37 mm$. The outlet clearance of the separator should be easily controlled within those ranges.