• 제목/요약/키워드: Optimal control design

검색결과 2,080건 처리시간 0.028초

Stochastic Optimal Control and Network Co-Design for Networked Control Systems

  • Ji, Kun;Kim, Won-Jong
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권5호
    • /
    • pp.515-525
    • /
    • 2007
  • In this paper, we develop a co-design methodology of stochastic optimal controllers and network parameters that optimizes the overall quality of control (QoC) in networked control systems (NCSs). A new dynamic model for NCSs is provided. The relationship between the system stability and performance and the sampling frequency is investigated, and the analysis of co-design of control and network parameters is presented to determine the working range of the sampling frequency in an NCS. This optimal sampling frequency range is derived based on the system dynamics and the network characteristics such as data rate, time-delay upper bound, data-packet size, and device processing time. With the optimal sampling frequency, stochastic optimal controllers are designed to improve the overall QoC in an NCS. This co-design methodology is a useful rule of thumb to choose the network and control parameters for NCS implementation. The feasibility and effectiveness of this co-design methodology is verified experimentally by our NCS test bed, a ball magnetic-levitation (maglev) system.

스마트 연결 제어 시스템과 연결 구조물의 통합 최적 설계 (Integrated Optimal Design of Smart Connective Control System and Connected Buildings)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제19권2호
    • /
    • pp.43-50
    • /
    • 2019
  • A smart connective control system was invented recently for coupling control of adjacent buildings. Previous studies on this topic focused on development of control algorithm for the smart connective control system and design method of control device. Usually, a smart control devices are applied to building structures after structural design. However, because structural characteristics of building structure with control devices changes, a iterative design is required for optimal design. To defeat this problem, an integrated optimal design method for a smart connective control system and connected buildings was proposed. For this purpose, an artificial seismic load was generated for control performance evaluation of the smart coupling control system. 20-story and 12-story adjacent buildings were used as example structures and an MR (magnetorheological) damper was used as a smart control device to connect adjacent two buildings. NSGA-II was used for multi-objective integrated optimization of structure-smart control device. Numerical simulation results show the integrated optimal design method proposed in this study can provide various optimal designs for smart connective control system and connected buildings presenting good control performance.

Optimal Structural Design for Flexible Space Structure with Control System Based on LMI

  • Park, Jung-Hyen;Cho, Kyeum-Rae
    • Journal of Mechanical Science and Technology
    • /
    • 제16권1호
    • /
    • pp.75-82
    • /
    • 2002
  • A simultaneous optimal design problem of structural and control systems is discussed by taking a 3-D truss structure as an object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these forms. We consider a minimum weight design problem for structural system and disturbance suppression problem for the control system. The structural objective function is the structural weight and the control objective function is $H_{\infty}$ norm from the disturbance input to the controlled output in the closed-loop system. The design variables are cross sectional areas of the truss members. The conditions for the existence of controller are expressed in terms of linear matrix inequalities (LMI) By minimizing the linear sum of the normalized structural objective function and control objective function, it is possible to make optimal design by which the balance of the structural weight and the control performance is taken. We showed in this paper the validity of simultaneous optimal design of structural and control systems.

최소위상시스템을 고려한 통합최적설계 (Combined Optimal Design with Minimum Phase System)

  • 박중현
    • 제어로봇시스템학회논문지
    • /
    • 제10권2호
    • /
    • pp.192-196
    • /
    • 2004
  • A combined optimal design problem is discussed taking a 3-D truss structure as a design object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these forms. We consider not only the minimum weight design problem for the structure, but also the suppression problem of the effect of disturbances for the control system as the purpose of the design. A numerical example shows the validity of combined optimal design of the structure and control systems. We also consider the validity of the sensor-actuator collocation for the control system design in this paper.

센서/엑츄에이터 배치를 고려한 구조-제어 통합최적설계 (Structure-Control Combined Optimal Design with S/A Collocation)

  • 박중현
    • 동력기계공학회지
    • /
    • 제8권1호
    • /
    • pp.69-74
    • /
    • 2004
  • A structure-control combined optimal design problem is discussed taking a 3-D truss structure as a design object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these forms. We consider not only minimum weight design problem for structure system, but also suppression problem of the effect of disturbances for control system as the purpose of the design. A numerical example shows the validity of combined optimal design of structure and control systems. We also consider the validity of sensor-actuator collocation for control system design in this paper.

  • PDF

Optimal control and design of composite laminated piezoelectric plates

  • ALamir, ALhadi E.
    • Smart Structures and Systems
    • /
    • 제15권5호
    • /
    • pp.1177-1202
    • /
    • 2015
  • The present paper is concerned with the optimal control and/or design of symmetric and antisymmetric composite laminate with two piezoelectric layers bonded to the opposite surfaces of the laminate, and placed symmetrically with respect to the middle plane. For the optimal control problem, Liapunov-Bellman theory is used to minimize the dynamic response of the laminate. The dynamic response of the laminate comprises a weight sum of the control objective (the total vibrational energy) and a penalty functional including the control force. Simultaneously with the active control, thicknesses and the orientation angles of layers are taken as design variables to achieve optimum design. The formulation is based on various plate theories for various boundary conditions. Explicit solutions for the control function and controlled deflections are obtained in forms of double series. Numerical results are given to demonstrate the effectiveness of the proposed control and design mechanism, and to investigate the effects of various laminate parameters on the control and design process.

OPTIMUM DESIGN OF AN AUTOMOTIVE CATALYTIC CONVERTER FOR MINIMIZATION OF COLD-START EMISSIONS USING A MICRO GENETIC ALGORITHM

  • Kim, Y.D.;Kim, W.S.
    • International Journal of Automotive Technology
    • /
    • 제8권5호
    • /
    • pp.563-573
    • /
    • 2007
  • Optimal design of an automotive catalytic converter for minimization of cold-start emissions is numerically performed using a micro genetic algorithm for two optimization problems: optimal geometry design of the monolith for various operating conditions and optimal axial catalyst distribution. The optimal design process considered in this study consists of three modules: analysis, optimization, and control. The analysis module is used to evaluate the objective functions with a one-dimensional single channel model and the Romberg integration method. It obtains new design variables from the control module, produces the CO cumulative emissions and the integral value of a catalyst distribution function over the monolith volume, and provides objective function values to the control module. The optimal design variables for minimizing the objective functions are determined by the optimization module using a micro genetic algorithm. The control module manages the optimal design process that mainly takes place in both the analysis and optimization modules.

Combined Optimal Design of Robust Control System and Structure System for Truss Structure with Collocated Sensors and Actuators

  • Park, Jung-Hyen
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권2호
    • /
    • pp.15-21
    • /
    • 2002
  • A control-structure combined optimal design problem is discussed taking a 3-D truss structure as a design object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these farms. We consider not only minimum weight design problem for structure system, but also suppression problem of the effect of disturbances for control system as the purpose of the design. A numerical example shows the validity of combined optimal design of structure and control systems. We also consider the validity of sensor-actuator collocation for control system design in this paper.

SDRE 기반 준최적 교통 혼잡 제어기 설계 (SDRE-Based Near Optimal Traffic Controller Design)

  • 최한호
    • 제어로봇시스템학회논문지
    • /
    • 제18권12호
    • /
    • pp.1086-1089
    • /
    • 2012
  • We propose a near optimal controller design method for ramp metering based on SDRE (State Dependent Riccati Equation) approach. We parameterize the optimal nonlinear controller in terms of the solution matrices of an SDRE. We also give a simple algorithm to obtain the controller gain. Finally we give numerical results to show the effectiveness of the proposed near optimal traffic controller design method.

비선형이산치계의 최적시간제어에 관한 연구 (A Study of Time Optimal Control for Nonlinear Sampled-data Contral Systems)

  • 천희영
    • 전기의세계
    • /
    • 제26권2호
    • /
    • pp.84-88
    • /
    • 1977
  • In this paper we apply the maximum principle to design of time optimal nonlinear sampled-data control systems. We introduce the general design procedures and the mathematical formalas for time optimal processes and trajectories. Then we show the application of the technique to determine the optimal control signal, control sequence, switching time and sampling period to the given 4th order process.

  • PDF