Browse > Article

OPTIMUM DESIGN OF AN AUTOMOTIVE CATALYTIC CONVERTER FOR MINIMIZATION OF COLD-START EMISSIONS USING A MICRO GENETIC ALGORITHM  

Kim, Y.D. (Department of Mechanical Engineering, Hanyang University)
Kim, W.S. (Department of Mechanical Engineering, Hanyang University)
Publication Information
International Journal of Automotive Technology / v.8, no.5, 2007 , pp. 563-573 More about this Journal
Abstract
Optimal design of an automotive catalytic converter for minimization of cold-start emissions is numerically performed using a micro genetic algorithm for two optimization problems: optimal geometry design of the monolith for various operating conditions and optimal axial catalyst distribution. The optimal design process considered in this study consists of three modules: analysis, optimization, and control. The analysis module is used to evaluate the objective functions with a one-dimensional single channel model and the Romberg integration method. It obtains new design variables from the control module, produces the CO cumulative emissions and the integral value of a catalyst distribution function over the monolith volume, and provides objective function values to the control module. The optimal design variables for minimizing the objective functions are determined by the optimization module using a micro genetic algorithm. The control module manages the optimal design process that mainly takes place in both the analysis and optimization modules.
Keywords
Catalyst; Cold-start; Light-off; Converter; Micro genetic algorithm; Optimization;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Bella, G., Rocco, V. and Maggiore, M. (1991). A study of inlet flow distortion effects on automotive catalytic converters. ASME J. Eng. Gas Turb. Pow., 113, 419-426   DOI
2 Hauber, T., Zache, P., Braun, J. and Ueberschar, D. (1998). Influence of the space between monoliths and the geometry of endcones on the conversion rate of a catalytic converter. SAE Paper No. 980424
3 Heimrich, M. J., Smith, L. R. and Kitowski, J. (1992). Cold-start hydrocarbon collection for advanced exhaust emission control. SAE Paper No. 920847
4 Jeong, S. J. and Kim, W. S. (2002). Simulation of thermal and flow characteristics for optimum design of an automotive catalytic converter. Chem. Eng. Commun. 189, 10, 1314-1339   DOI   ScienceOn
5 Martin, A. P., Will, N. S., Bordet, A., Cornet, P., Gondoin, C. and Mouton, X. (1998). Effect of flow distribution on emission performance of catalytic converters. SAE Paper No. 980936
6 Melis, S., Varma, A. and Pereira, C. J. (1997). Optimal distribution of catalyst for a case involving heterogeneous and homogeneous reactions. Chem. Eng. Sci. 52, 2, 165-169   DOI   ScienceOn
7 Psyllos, A. and Philippopoulos, C. (1993). Performance of a monolithic catalytic converter used in automotive emission control: the effect of longitudinal parabolic active metal distribution. Ind. Eng. Chem. Res. 32, 8, 1555-1559   DOI   ScienceOn
8 Summers, J. C., Hiera, J. P. and Williamson, W. B. (1991). Noble metal usage reduction strategies for three-way emission control catalysts. SAE Paper No. 911732
9 Tronci, S., Baratti, R. and Gavriiilidis, A. (1999). Catalytic converter design for minimisation of cold-start emissions. Chem. Eng. Commun., 173, 53-77   DOI   ScienceOn
10 Bird, R. B., Stewart, W. E. and Lightfoot, E. N. (1960). Transport Phenomena. 2nd edn. John Wiley & Sons. New York
11 Summers, J. C., Skowron, J. F. and Miller, M. J. (1993). Use of light-off catalysts to meet the California LEV/ULEV standards. SAE Paper No. 930386
12 Koltsakis, G. C. and Stamatelos, A. M. (1997). Catalytic automotive exhaust aftertreatment. Prog. Energy Combust. Sci. 23, 1, 1-39   DOI   ScienceOn
13 Zarowski, C. J. (2004). An Introduction to Numerical Analysis for Electrical and Computer Engineers. John Wiley & Sons. New York
14 Whittenberger, W. A. and Kubsh, J. E. (1990). Recent developments in electrically heated metal monoliths. SAE Paper No. 900503
15 Kim, J. Y. and Son, S. H. (1999). Improved flow efficiency of a catalytic converter using the concept of radially variable cell density - Part I. SAE Paper No. 1999-01-0769
16 Brisley, R. J., Chandler, G. R., Jones, H. R., Anderson, P. J. and Shady, P. J. (1995). The use of palladium in advanced catalysts. SAE Paper No. 950259
17 Jeong, S. J. and Kim, W. S. (2001). A new strategy for improving the warm-up performance of a light-off auto-catalyst for reducing cold-start emissions. Proc. Inst. Mech. Eng., D, J. Automob. Eng. 215, 11, 1179-1196
18 Jeong, S. J. and Kim, W. S. (2000). Three-dimensional numerical study on the use of warm-up catalyst to improve light-off performance. SAE Paper No. 2000- 01-0207
19 Oh, S. H. and Cavendish, J. C. (1982). Transients of monolithic catalytic converters: response to step changes in feedstream temperature as related to controlling automobile emissions. Ind. Eng. Chem. Prod. Res. Dev. 21, 1, 29-37   DOI
20 Voltz, S. E., Morgan, C. R., Liederman, D. and Jacob, S. M. (1973). Kinetic study of carbon monoxide and propylene oxidation on platinum catalysts. Ind. Eng. Chem. Prod. Res. Dev. 12, 4, 294-301   DOI
21 Ma, T., Collings, N. and Hands, T. (1992). Exhaust gas ignition (EGI) - a new concept for rapid light-off of automotive exhaust catalyst. SAE Paper No. 920400
22 Baratti, R., Feckova, V., Morbidelli, M. and Varma, A. (1997). Optimal catalyst activity profiles in pellets. 11. the case of multiple-step distributions. Ind. Eng. Chem. Res. 36, 8, 3416−3420
23 Heibel, A. and Spaid, M. A. A. (1999). A new converter concept providing improved flow distribution and space utilization. SAE Paper No. 1999-01-0768
24 Chakravarty, S., Mittra, R. and Williams, N. R. (2002). Application of a microgenetic algorithm (MGA) to the design of broad-band microwave absorbers using multiple frequency selective surface screens buried in dielectrics. IEEE Trans. Ant. Propa. 50, 3, 284-296   DOI   ScienceOn
25 Church, M. L., Thoss, J. E. and Fizz, L. D. (1991). Operating temperature effects on catalyst performance and durability. SAE Paper No. 910845
26 Jeong, S. J. and Kim, W. S. (2003). A study on the optimal monolith combination for improving flow uniformity and warm-up performance of an auto-catalyst. Chem. Eng. Process. 42, 11, 879-895   DOI   ScienceOn
27 Harada, K., Shimizu, R., Kurita, K. and Muramatsu, M. (1992). Development of air-assisted injector system. SAE Paper No. 920294