• Title/Summary/Keyword: Optimal control design

Search Result 2,082, Processing Time 0.035 seconds

A Study on Design of Production System Using Multiple Characteristics Robust Design in Uncertain Environment (불확실한 환경에서의 다특성치 강건설계를 이용한 생산시스템 설계에 관한 연구)

  • 양광모;서장훈;박진홍;강경식
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.05a
    • /
    • pp.61-65
    • /
    • 2004
  • As technique that can contribute in quality improvement in design process to overcome shortcoming of traditional quality control, call design or development department quality control activity that is achieved to reduce gun damage shuddering at circle minimizing change or side effect of product performance as off-line quality control. This paper discuss optimal process design of investment projects expansion and replacement investment on each line or individual in the production. Generally optimal plant design has add to a few method by Subsidiary means with use a especial method. And then in this paper, a Robust design is presented, which may be effective to the processes appraisal or improvement. We propose that should make a optimal plant design model for reducing field failure rate to assign by real data on different factors in plant system. Using this model, robust design of taguchi method used in this comprehensive method for reducing field failure rate in plant system.

  • PDF

Optimal Vibration Control of Rigid Plate Elastically Supported at the Edges (끝단이 탄성 지지된 강체판의 최적진동제어)

  • Lee, Seong-Ki;Yun, Shin-Il;Han, Sang-Bo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.828-833
    • /
    • 2003
  • Rigid plate elastically supported at the edges is modeled and the performance of the optimal vibration control under sinusoidal excitation is tested. The controller based on the linear quadratic regulator with output feedback is designed to control the multi-degree of freedom vibration. Relative weighting parameters are considered as design constraints to determine the limitation of maximum control force and state parameters. Control force calculated by proportional output feedback of the displacement and velocity is used to suppress the vibration induced by the sinusoidal external force. The active vibration control of vibrating plate by the LQR controller is examined through the numerical simulations that show the effectiveness of optimal control scheme on the three degrees of freedom structure.

  • PDF

Nonlinear Optimal Control of an Input-Constrained and Enclosed Thermal Processing System

  • Gwak, Kwan-Woong;Masada, Glenn Y.
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.160-170
    • /
    • 2008
  • Temperature control of an enclosed thermal system which has many applications including Rapid Thermal Processing (RTP) of semiconductor wafers showed an input-constraint violation for nonlinear controllers due to inherent strong coupling between the elements [1]. In this paper, a constrained nonlinear optimal control design is developed, which accommodates input constraints using the linear algebraic equivalence of the nonlinear controllers, for the temperature control of an enclosed thermal process. First, it will be shown that design of nonlinear controllers is equivalent to solving a set of linear algebraic equations-the linear algebraic equivalence of nonlinear controllers (LAENC). Then an input-constrained nonlinear optimal controller is designed based on that LAENC using the constrained linear least squares method. Through numerical simulations, it is demonstrated that the proposed controller achieves the equivalent performances to the classical nonlinear controllers with less total energy consumption. Moreover, it generates the practical control solution, in other words, control solutions do not violate the input-constraints.

Minimum-Time Guidance and Control Law for High Maneuvering Missile

  • Yamaoka, Seiji
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.46-58
    • /
    • 2009
  • This paper deals with design procedure of online guidance and control law for future missiles that requires agile maneuverability. For the purpose, the missile with high powered side thruster is proposed. The guidance and control law for such missiles is discussed from a point of view of optimal control theory in this paper. Minimum time problem is solved for the approximated system. It is derived that bang- bang control is optimal input from the necessary conditions of optimal solution. Feedback guidance without iterative calculation is useful for actual systems. In this paper. multiple design point method is applied to design feedback gains and feed forward inputs of the guidance and control law. The numerical results show that the proposed guidance and control law has a high -performance for wide-ranging boundary conditions.

Research on Fuzzy I-PD Optimal Preview Control

  • Wang, Dong;Aida, Kazuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.483-483
    • /
    • 2000
  • The Fuzzy Preview Control (FPC) design methodology using I-PD Preview Control (IPC) and Optimal Preview Control (OPC)[6] are discussed in this paper. First we show a new fuzzy controller with single input single output, and build a relationship between it and the I-PD Control proposed by Kitamari, as well as Optimal Control with some specific equations. We also give the stability analysis with Lyapunov theorem. On this way, we can design a Fuzzy I-PD Controller (FIC) very easier and more effective. Then, preview control element design methodology of FCP was given according to IPC and OPC. Third, to make the system more rapidly and more little overshooting, two factors are given to adjust the controller's properties. At last, the performance of FPC is revealed via computer simulation using a nonlinear plant.

  • PDF

A Study on Dynamic Characteristics Improvement of Fast Response Proportional Flow Control Valve (고응답 비래 유량제어 밸브의 동특성 향상에 관한 연구)

  • 김고도;김원수;이현철;윤소남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.1053-1057
    • /
    • 1996
  • The purpose of this study is to bring out the optimal design factors which effect on dynamic characteristics in the design of proportional flow control valve with fast response characteristics, and to verify the validity of the design factors In this study, force feedback type flow control valve with nozzle-flapper is studied. And, the influences which fixed orifice, nozzle diameter, and maximum displacement between nozzle and flapper effect on dynamic characteristics are analyzed. We have done simulations using the optimal design factors and simulink(Matlab) as a simulation tool, and verified the validity of our simulations by means of comparison our simulation results with an experimental results of another similar valve.

  • PDF

Optimal Design for a Moving aMgnet Type Linear D.C. Motor (가동자석형 선형 직류모터의 최적설계)

  • Son, Dong-Seol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.2
    • /
    • pp.94-98
    • /
    • 1995
  • This paper proposes an optimal design method for the weight and cost of a moving magnet typer linear DC motor (MM-LDM). The optimal design condition such as type and size of MM-LDM were determined by the trinary search algorithm after adjusting a standard function and its related parameters. In order to verigy results of the optimal design by the computer simulation, the designed values such as a thrust, a current, a velocity, and etc. of the fabricated MM-LDM were measured. And the measurement results are in good agreement with the designed ones.

  • PDF

Optimal Design for Performance Improvements of Brushless DC Motor considering Advanced Twelve Step Control (개선된 12 스텝 제어를 고려한 브러시리스 DC 전동기의 성능 향상을 위한 최적화 설계)

  • Kim, Sung-An;Cho, Yun-Hyun
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.9-13
    • /
    • 2019
  • This paper presents an optimal design of a brushless DC motor considering an advanced $165^{\circ}$ 12 step control for a cost reduction. The advanced 12 step control that extends the conduction angle $150^{\circ}$ can improve the output of the motor. The optimal design considering the improved output power of the motor is proposed by reducing the volume of rotor, stator and permanent magnet using response surface method. The proposed design satisfied the performance requirements and efficiency improvement of the conventional motor and reduced the volume about 3.5%. The feasibility of the optimal design is proved by the electromagnetic field analysis using the finite element method.

Robust Current Control for Permanent Magnet Synchronous Motors by the Inverse LQ Method - An Evaluation of Control Performance Using Servo-Locks at Low Speed -

  • Takami Hiroshi
    • Journal of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.228-236
    • /
    • 2004
  • This paper describes the optimal current-control of a permanent magnet synchronous motor by the use of robust and simple current controllers, based upon the analytical procedure known as the inverse LQ (ILQ) design method. The ILQ design method is a strategy for finding the optimal gains based on pole assignment without solving the Riccati equation. It is very important to keep the motor in robust servo-lock. By experiments and simulations, we will show that the ILQ optimal servo-system with servo-lock is more insensitive at low speeds to variations in armature inductance than the standard PI servo-system. Variations in armature inductance have the greatest influence on the responses of a servo-system.

PID Type Iterative Learning Control with Optimal Gains

  • Madady, Ali
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.194-203
    • /
    • 2008
  • Iterative learning control (ILC) is a simple and effective method for the control of systems that perform the same task repetitively. ILC algorithm uses the repetitiveness of the task to track the desired trajectory. In this paper, we propose a PID (proportional plus integral and derivative) type ILC update law for control discrete-time single input single-output (SISO) linear time-invariant (LTI) systems, performing repetitive tasks. In this approach, the input of controlled system in current cycle is modified by applying the PID strategy on the error achieved between the system output and the desired trajectory in a last previous iteration. The convergence of the presented scheme is analyzed and its convergence condition is obtained in terms of the PID coefficients. An optimal design method is proposed to determine the PID coefficients. It is also shown that under some given conditions, this optimal iterative learning controller can guarantee the monotonic convergence. An illustrative example is given to demonstrate the effectiveness of the proposed technique.