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Nonlinear Optimal Control of an Input-Constrained
and Enclosed Thermal Processing System

Kwan-Woong Gwak and Glenn Y. Masada

Abstract: Temperature control of an enclosed thermal system which has many applications
including Rapid Thermal Processing (RTP) of semiconductor wafers showed an input-constraint
violation for nonlinear controllers due to inherent strong coupling between the elements [1]. In
this paper, a constrained nonlinear optimal control design is developed, which accommodates
input constraints using the linear algebraic equivalence of the nonlinear controllers, for the
temperature control of an enclosed thermal process. First, it will be shown that design of
nonlinear controllers is equivalent to solving a set of linear algebraic equations—the linear
algebraic equivalence of nonlinear controllers (LAENC). Then an input-constrained nonlinear
optimal controller is designed based on that LAENC using the constrained linear least squares
method. Through numerical simulations, it is demonstrated that the proposed controller achieves
the equivalent performances to the classical nonlinear controllers with less total energy
consumption. Moreover, it generates the practical control solution, in other words, control
solutions do not violate the input-constraints.

Keywords: Constrained linear least squares, input constraint, LAENC, nonlinear optimal control.

1. INTRODUCTION

Estimating and controlling energy inputs from
distributed energy sources to generate desired heating
profiles (temperature or heat flux) for material
processing is a classic optimal design problem. In
many applications, such as the rapid thermal
processing (RTP) of semiconductor wafers, infrared
paint dryers, annealing furnaces, and directed energy
manufacturing systems such as selective laser
sintering, precise thermal control is necessary for
quality assurance.

Control engineers approached to this energy input
estimation/control  problem using mathematical
modeling and feedback control, and good examples
are found in the RTP temperature control of
semiconductor wafers [2-13]. Typical models of RTP
systems are described by PDEs. Solving these
equations are computationally expensive and it is
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practically difficult to implement PDEs into the
controller design. Therfore, many control engineers
used lumped parameter models [3-6] and empirical
models [5,7]. Several feedback control algorithms
have been applied on those models (lingar
programming [3], linear-quadratic ([7], linear-
quadratic-Gaussian [5], internal model control [4], and
neural network [8]) and promising results have been
reported, however, most of the designs are based on
low-order (dimensional) linear dynamic models which
are valid only for small RTP chambers. Strong
coupling between the elements in the system that
cause ill-conditioned behavior did not appear in their
work because of using the low order models. Low
order models cannot guarantee high performance for
large dimensional systems such as infrared paint
dryers and annealing furnaces. Also, variations in DC
gain of a linearized model by temperature changes
[11] can be a significant problem for precision control.
Hence, in this research, a generalized high-order,
nonlinear, and highly coupled ill-conditioned thermal
system model is considered. For such a system model,
application of nonlinear control system is natural as
the dominant heat transfer mode is radiation.
Feedback linearization (FBL) and sliding made
control (SMC) are two widely used control schemes
for nonlinear systems. FBL is popular because well-
developed design techniques for linear systems can be
applied to synthesize the appropriate controller for the
linearized systems. SMC is attractive because it
provides high speed response, good transient
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performance and is insensitive to certain parameter
variations and external disturbances. Despite these
desirable features, the major drawback of using
FBL/SMC is their inability to handle explicit input
constraints while the thermal system treated in this
research clearly has input constraints—heater capacity
and non-negativity of the heater input. If a design does
not take into account the bounds on the control input
and if the control signals saturate during operation, the
stability and performance of the closed loop system
are diminished. Hence, control solutions for highly
nonlinear systems with input constraints are important
research areas. However, few results have been
reported for constrained FBL/SMC nonlinear control
systems while several design techniques are available
for constrained linear systems.

Hence, in this paper, we propose a constrained
FBL/SMC nonlinear optimal controller that can be
represented in a simple constrained linear least square
problem for the temperature control of an input-
constrained and ill-conditioned thermal process. The
fundamental approach is to use the linear algebraic
equivalence of the nonlinear controller (LAENC)—
design of FBL/SMC is equivalent to solving a set of
linear algebraic equations. Input constraints and
optimization issues are addressed based on that
LAENC.

The proposed controller is structurally very similar
to model predictive control (MPC) since control
actions are obtained through an optimal control
strategy that minimizes a performance function.
However it has the distinct advantage over MPC in
that it preserves the characteristics of FBL/SMC—one
can design the output/state behavior with FBL, and
constrain the states to remain on the desired manifold
with SMC. This is not possible with MPC. Also, the
proposed controller is easy to design and is
computationally efficient since it solves the linear
least squares problem.

2. BACKGROUND

A common approach to designing nonlinear FBL
control with constraints uses changes in the reference
commands. Pappas et al. [14] calculated the regions of
attraction of the controllers and characterized the
space of feasible trajectories that do not violate the
input constraints. Similarly, Aguilar et al. [15] detuned
the FBL to avoid input constraints. But these
approaches [14,15] generated unnecessarily poor
performance [28]. Yip and Hedrick [16] devised a
dynamic reference governor which changes the
reference command to the feedback linearized system
using a filtered version of the reference command.
However, it is difficult to extend this approach to
multi-input multi-output (MIMO) systems.

Valluri and Soroush [17] derived two nonlinear

control laws satisfying input constraints by
minimizing the difference between the closed loop
output response and the nominal linear output
response that the same control law induces when there
are no constraints.

Another approach to accommodate input
constraints is anti-windup schemes that modify the
controllers to minimize the adverse effects of windup.
It is based on an observer-based structure in which the
difference between the computed input and the actual
input to the process is fed back to the controller
dynamics in an attempt to minimize the difference.
Kendi and Doyle [18] proposed an instantaneous
optimization method to minimize the performance
loss associated with enforcing the actuator constraints.
Within this framework, the nonlinear controller was
represented as an optimal linear controller with an
auxiliary feedback loop which cancels the effects of
nonlinear dynamics and measured disturbances.
However, since the nonlinear corrective action is
implemented by feedback, the difficulty arises in
implementing a nonlinear internal-model-based
antiwindup controller. Kapoor and Daoutidis [19]
devised a nonlinear observer-based anti-windup
algorithm, in which the anti-windup gain is a
nonlinear function of the states of the system and with
which it is possible to attenuate the effect of windup
arbitrarily fast. However, in these researches ([17-19]),
input constraints are not considered explicitly as part
of the controller design. Instead, the controller is
combined with an anti-windup compensator designed
to minimize performance degradation caused by
constraints [28]. Moreover, it is not possible to restrict
the output behavior to the desired dynamics.

For SMC, Shyu and Lin [20] handled input
constraints by computing a bound for the existence of
sliding motion and used a switching surface with an
integrator; but it is applicable only to linear systems.
Lu and Chen [21] obtained the range of allowable
reference inputs by estimating the maximum and
minimum values of the control action to ensure
sliding behavior throughout the response—but the
approach is only applicable to linear time-varying
systems. Okabayashi and Furuta [22] showed the
effectiveness of using a nonlinear hypersurface
(switching surface) instead of a conventional
hyperplane as the switching surface; but this approach
is applicable only to linear systems.

Popular approaches for the control of nonlinear
systems with input constraints uses nonlinear
optimization of a model predictive control (MPC).
MPC is a class of control algorithms that utilize an
explicit process model to predict the effects of future
control actions on the output of the process [23]. The
control sequence is computed using an optimal control
strategy that minimizes a performance function which
includes the differences between the desired and
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predicted process variables, and a penalty on the
control effort. MPC is usually divided into nonlinear
model predictive control (NMPC) and linear model
predictive control (LMPC).

NMPC uses the nonlinear process model to predict
the effects of future manipulated inputs on future
values of the controlled outputs. NMPC handles input
constraints by solving a nonlinear programming
problem on-line for each sampling period. This
approach is computationally expensive and potentially
unreliable as the nonlinear program may converge to a
local minimum or even diverge [24].

LMPC minimizes a quadratic performance function,
and the optimal solution, when subjected to linear
constraints, is found by using quadratic programming
(QP) routines. Using the convex nature of the problem,
QP produces numerically efficient results by relying
on fast gradient descent methods [25]. Despite the
nice features of LMPC for linear systems, LMPC can
not be applied directly to nonlinear processes. To
exploit LMPC for nonlinear processes, a hybrid
scheme is used by several researchers [24-28]—a
combination of FBL and MPC. Using the resulting
linearized system by FBL, the NMPC control problem
is transformed into an optimization problem that
minimizes a quadratic function, whose solutions can
be found wusing reliable and fast quadratic
programming routines. However, FBL maps the
original input linear constraints into nonlinear and
state dependent constraints on the controller output
[25], which invalidates the direct use of QP routines.

Also, it requires the knowledge of future values of
the input and state variables, which is not possible to
determine until the constraints are specified. Instead
of the exact mapping of future input constraints, Botto
et al. [25] used iterative approximate mapping
techniques, Henson and Krtz [29] extended the linear
constraint relations of the first prediction over the
entire control horizon and others also proposed
approximate mapping methods [24,26,27]. Therefore,
MPC requires an additional complex approximation
computation to utilize LMPC, and it is only applicable
to feedback linearizable or linear systems.

All the above-mentioned methods of dealing with
input constraints have disadvantages, such as complex
designs, limitation to linear systems only, and the need
to change reference signals. In this paper, we propose
a nonlinear optimal input-constraint-satisfying
controller that is simple to design and is
computationally efficient.

3. SYSTEM MODELING AND NONLINEAR
CONTROL DESIGN

The problem considered in this paper is to estimate
the necessary thermal conditions on the heater
surfaces to achieve a desired temperature distribution
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on a design surface. Consider the two-dimensional
enclosure shown in Fig. 1, made up of the design
surface (bottom center), reflective surfaces (sides and
bottom sides), and heater surfaces (top). The design
surface, heated by the heater surfaces, is controlled to
a prescribed profile shown in Fig. 2 and to be spatially
uniform in temperature. The dimensions, assumptions,
exchange factors, material properties, and desired
thermal objectives are adopted from [30].

The system is divided into 64 elements; ten for the
design surface (=9-18), 30 for the heater surfaces
(7=31-60) and 24 for the reflective surfaces (i=1-8, 19-
30, 61-64), and the state equations for each element i
are derived as follows using the energy equation

1 N
—Al—[—giafoll- + Z g,—EFk_iO'x,? Al +@ |,
i

).Cl' =
pic p,i5i k=1

o)
where state x; represents the surface temperature of
each surface 7, and Q stands for the power input for

heater strips (W/m), A/, for the length of ith
element(m), ¢, for specific heat (J/kg K), p for

density (Kg/m3), & for the plate thickness(m), &
for the emissivity of the surface, o for the Stefan-
Boltzmann constant (¢ =5.67 x 10° W/m’K*), EFi;
for the exchange factor between element i and 7, and N
for the total number of elements.

Equation (1) can be expressed in a more familjar
and general form as:
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x =f(x) +g(x)u,

2
y =h(x), )

where xeR64, ueRSO, yeRw, feR64——>R64,

g:R64—>R64,h:R64—>R10 and f, g and h are

smooth functions of x. The output, y, is the
temperature of the design surface, therefore

Xy
y(®) =h(x)=

18

=[010x8 L1010 O10.46]%x = Gx.

3)
The system equation is non-square; 30 inputs and
10 outputs. For non-autonomous, non-square, affine
nonlinear systems described by (2), both FBL and
SMC are appropriate control algorithms.
A closer look at the output equation reveals that the
relative degree of the system is two, hence the output
is differentiated twice:

¥(1) = Lih(x) + LyLeh(x)u. (4)

Let the desired dynamics for the FBL be defined as

e+tAe+A,e=0 where, e=y—-y,. )
Then
y :yd —7\.1é—7\,29. (6)

Substituting (6) into (4) yields
(LgLeh(x))u = {yd —Ae—Aje— szh(x)}. (7)
Finally, the nonlinear controller is
+ (.. . 2
u=(LyLh(x)) {yd ~Ae—Aye— th(x)}, (8)

where + represents the pseudo-inverse since

L,L¢h(x) is not square.

For SMC, instead of setting the design surface
temperature as the output, the sliding surfaces
S=é+xg,e are selected as the outputs. With only

one differentiation
S=&+Agmce =¥ —¥a + Asmce
=Lth(x) + LyLeh(x)u — 4 +Agpcé 9)
=-D-sgn(S).
Rearranging:

(Lgth(x)>u - {yd —hgycé— L2h(x) - D- sgn(S)} ,
(10)

Temperature(K)

Surface index i 0

time(sec)

(a) Temperature

Control Q(Wim)

50
45

Heater node o time(sec)

(b) Control input Q

Fig. 3 (a) Temperature distribution along the surfaces
(b) control input Q for FBL with A, =0.1,

A,y =0.1.

where D is a positive definite diagonal gain matrix
and sgn(S) is the signum function. The nonlinear
control using SMC is

u=(LgLeh(x)" {74 ~hsmcé ~ Lih(x) - D sgn(S)).
(11)

Fig. 3 shows the system response using a classic
nonlinear FBL controller—Fig. 3(a) shows excellent
tracking of the design surface temperatures to the
desired temperature trajectory. However, the heater
surface control input distribution (Fig. 3(b)) shows
that 14 out of 30 heaters have negative heat inputs—
the heaters act as heat sinks rather than heat sources.
The control input solutions (heating surface Q’s) are
not practical solutions. In other words, the solution
violates input constraints that all control inputs must
be positive since the actuators are heaters. The non-
practical and constraint-violating control solutions
arise from the ill-conditioned nature of the controller

[1].

4. LINEAR ALEBRAIC EQUIVALVECE OF
THE NONLINEAR CONTROLLERS
(LAENC)

From the design processes of FBL and SMC, notice
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that both controller designs ((8) and (11)) end up in
the form

u=x,=A"b = Ax, =b, (12)
1
where A=LgLré h(x)

v—Lg h(x)
b = l"—l k

Jfor FBL

-Lth(x)- D B e _ n-sgn(s) for SMC.
dr*

k=1

The subscript . on control input vector x, will be

omitted hereafter for the simplicity. All the vector x’s
appear hereafter represent the control input vector, not
a state vector.

Note that (12) is based on the assumption that the
system can be represented in normal form, is affine in
control, has an invertible decoupling matrix D(x)

and has stable zero dynamics.

The control input vector x is simply obtained by
matrix inversion. However, the solution to (12) is
neither unique nor does it always exist. Once the
dimension of the solution vector (number of inputs,
i.e., controllers) is less than the number of equations

(outputs/sliding surfaces), and matrix A € R”*" has
full column rank (m), the problem is a least squares
problem. On the other hand, if the dimension of the
solution vector is larger than the number of equations

and matrix A has full row rank (p) for A e R”,
the problem is redundant and has infinite number of
solutions. In selecting an optimal solution, a unique
solution can be found by considering certain
constraints, like minimizing the control input vector

]]x”i . Such an optimal solution can be found by using

the pseudo-inverse of A, represented as A*. Even if
there is no solution, the psedo-inverse provides the
best approximation that minimizes the squared error;

JAx b (13)

5. CONSTRAINED NONLINEAR
OPTIMAL CONTROL

Equation (12) is a set of linear algebraic equations
in which the solution x is the control input vector.
This is a significant representation of the nonlinear
control design since well developed linear algebraic
equation solution techniques can be applied directly to
satisfy the nonlinear controller (FBL/SMC)
characteristics (performance). Hence many different
problems can be  formulated—minimization,
maximization, optimization (tradeoff) and constraints
can be treated for FBL/SMC.

As an example, one can think of the constrained
linear least squares problem defined by

min“Ax - b”; such that x; <x<x_ ... (14)

X
For this case, the solution is always guaranteed but a
residual arises to satisfy the input bounds. This
residual can be considered as a modeling error which
diminishes performance.

Once the solution of (14) secures the closed loop
stability and performance, another constraints can be
considered—minimizing the control effort. Then, a
new cost function is defined as

+Z7/2 2 2

2
= [Ax bl + 7% Mx;

J=ﬁ:(Aix—b as)

and a new input-constrained nonlinear optimization
(tradeoff) problem is posed as;

min J = min {"Ax - b||§ + 72 HMx"i}
X X

such that x, <x<x_ .., (16)
where ;/2 is the weighting parameter that balances
tradeoff between minimum effort and control
performance.

As the existence of a solution vector, that
guarantees the performance and the stability of the
closed loop system while satisfying the input
constraints, is unknown a priori, we let y=0 to

begin with and then start to increase its value to sorne
positive number.

The analytical solution to this problem can be
obtained by the following equation if there are ho
constraints on x. That is, minimizing (15) with respect
to x gives:

= ( ATA + szTM)_] ATb. (17)

However, with the input constraints, an analytical
solution for the optimal control vector can no longer
be found. Note here that (16) can also be represented
in augmented form as

x_
Y™ 0 )
min SX <X

A
where Aaug = ( Mj c R(P+m)><m ,
Y

2
min
X

= min“A x—b
X

aug aug i

such the x

b
by = (0] e R (18)
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This formulation is in the form of linear least
squares—therefore constrained linear least squares
method can be applied to solve the constrained
nonlinear optimal control problem.

Equation (18) is an optimization problem that
tradeoffs the control effort and control performance by
using weight y while satisfying input constraints.
As y increases, more weight is given to reduce the

control effort thereby diminishing the
performance (increasing residual).

Notice that this approach is very similar to using
linear optimal (LQ) control and MPC, where the basic
idea is to find control inputs that minimize a cost
function that balances error and control effort.
However there is a distinct difference between this
problem formulation and that using LQ and MPC—
the control input obtained by this solution not only
minimizes the cost function to balance error and
control effort size, which LQ and MPC can do as well,
but it also preserves the characteristics of the
nonlinear controller on which the process was based,
i.e. FBL/SMC. In other words, satisfying Ax=b
guarantees  the  designer’s  desired  output
dynamics/sliding behavior. LQ and MPC minimize
the performance index but does not make the system
output follow the desired output dynamics/sliding
behavior.

Due to the performance index tradeoffs, Ax=Db is
not perfectly satisfied, but the solution can be close
depending on the value of y. This solution vector, x,

system

guarantees the output dynamics/sliding behavior to be
as close as it was originally designed.

To summarize, the algorithm for the constrained
nonlinear optimal control design is defined as
constrained linear least squares problem as

min {Ax~b; 7 M |

such that X ;, <X<x

max * (19)

Notice here that this optimization has two terms
(residual and control input size), but can be easily
extended to additional linear constraints terms as
follows depending on the design objectives,

min J = min{|Ax - b"; +92 HMx”;
X X 2 2 (20)
+ A |Lxf, + a?[Cx—d]; +--,

where L, C, d are arbitrary constraint matrices and
B, a are the optimization parameters. This means the

number of rows of matrix A,, in (21) can be

extended to any size depending on the size of the
additional constraints added. Equation (20) is also
equivalent to

A 2
min ™ X— =min”A x-b 2
x || AL 0 x (- aeT Tauglp’
aC ad J|, @1
A
where A, = ™ b, =
aug AL > Vaug 0
aC ad

This problem is still in the same form as (18), hence
it can be solved by the same solution methods used
for (18). Of course, the constraints added could be
nonlinear instead of linear constraints, however the
problem becomes a nonlinear optimization problem.
Therefore in this paper, the focus is restricted to the
linear constraints only such that the optimization
problem could be solved without nonlinear
programming technique which is computationally
expensive and potentially unreliable.

In summary, the linear equivalence of the nonlinear
controller design is very powerful in solving nonlinear
optimization problems with constrained inputs. It is
simple to implement, satisfies input constraints and
preserves the characteristics of FBL/SMC, all
simultaneously. Note that the proposed controller is
applicable only to a class of systems that satisfy the
assumptions of the LAENC mentioned in the previous
section.

6. APPLICATION TO THE TEMPERATURE
CONTROL OF AN INPUT-CONSTRAINED
AND ILL-CONDITIONED THERMAL
PROCESS

As the control input solutions for both classical
nonlinear controllers in (8) and (11) violate the input
constraints, the proposed constrained nonlinear
optimal controller is applied to the temperature
control of an input-constrained and ill-conditioned
thermal process in this section. Note that solution
vector x represents the control input vector, not a state
vector.

As the existence of a solution vector is unknown a
priori, we can start with ¥ =0 to begin with, so the

temperature control problem of the thermal system
with nonnegative input constraints is defined as
follows.

min |Ax ~ b"; such that x>0 (22)
X

Fig. 4(a) shows the temperature distribution of all
the surfaces subject to the heater inputs computed by
(22). The linear least squares algorithm with
nonnegative constraints in MATLAB® is used to solve
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Fig. 4. Responses of the input constrained nonlinear controller in (22).

(22). Fig. 4(a) shows that the proposed controller
preserves the characteristics of FBL on which it was
originally designed. In other words, the outputs
(surfaces 9-18) follow the desired error dynamics. Fig.
4(c) shows that all heater inputs satisfy the input
constraints, i.e., Q>0. Fig. 4(f) shows the Euclidean

norm of the residuals, considered as a modeling error
which is inevitably caused by the input constraints.
The residuals are relatively small in magnitude; hence,
input-constraint-satisfying solutions are obtained with
little degradation in performance which is verified in
Fig. 4(a).

Positive net energy must be put into the system to
control the design surface temperatures to follow the
desired temperature profile. However due to the ill-

conditioned nature of the FBL/SMC controllers, the
control input distribution was uneven (Fig. 3(b)),
resulting in large positive inputs for some heaters and
negative inputs for others. However to satisfy the
constraint, i.e., x>0, in this case of (22), it is
expected that the linear least squares algorithm with
nonnegative constraints will result in some inputs to
be zero, i.e., some heaters are turned off, while the
rest are strictly positive. This is verified in Fig. 4(c)
where eighteen (surfaces 31, 32, 35, 37, 38, 39, 41, 43
47, 49, 50, 51-55, 57, 59) out of 30 heaters are turned
off throughout the process. The remaining heaters
must provide all the energy needed to satisfy Ax=b,
resulting in high peak values in certain heaters—in
Fig. 4(c) the peak control input is 14,788W/m, which

>
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Fig. 5. Responses of the constrained nonlinear optimal controller with }/2 =1E-6 in (23).

may violate the heater capacity. Figs. 4(c) and (d)
show that the process is controlled by a few inputs,
which implies that a smaller number of heaters can
satisfy the design goal—an economic and
computation advantage. This observation can lead to a
system optimization problem in which different
numbers and locations of heaters could be determined.

As the solution to (22) secures the closed loop
stability and performance while satisfying the input
constraints, tradeoff parameter y now can be
increased.

The identity matrix X543 is used for the

weighting matrix M in (18), i.e., the optimization
problem is between performance (residual) and
minimizing control effort. This is a nonlinear optimal

control problem that solves a linear least squares
optimization with nonnegative input constraints:

2
such that x >0. (23)

T
X aug aug |5

Figs. 5 and 6 are the result of the linear least
squares with nonnegative input constraints in (23)

with 72 =1E-6 and y*=1E-4, respectively. Larger
;/2 places more weight on reducing control effort,
hence less total Q, resulting in larger maximum and
total error values. However larger }/2 does not

always guarantee less total energy use since it tries to
minimize control effort by sacrificing residual—
increased residual causes larger errors in the
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performance and performance degradation increases
the control inputs. Therefore the value of }/2 should

be selected carefully.

Notice that Figs. 6(a) and (¢) are similar to those of
the Tikhonov-FBL results in [1]—the control input
distribution is more uniform than in the Fig. 5 case.
Note that Eq. (23) is equivalent to

min {"Ax - b”i +7? |[Mx|[§} such that x>0,
X

where M= I3,,;,. Hence larger 7* implies more

weight on minimizing the Euclidean norm, ”x”z—

Euclidean distance of the vector x from the origin

. . 2
which can be written as x|, =x{ +x7 ++++xZ. To

minimize the Euclidean norm while keeping the total
sum of all the elements the same (because the total
amount of input energy at any moment must be kept
as needed), the heater inputs should be more uniform.

Hence, larger values of 7/2 result in more uniform

heater input distributions, thereby 7> =1E-4 is large

enough to make the heater inputs to be sufficiently
uniform such that all the inputs are strictly positive
and no inputs turned off. However, the smoothing
effect for »%=1E-6 is not large enough, resulting in

uneven heater input distribution, i.e., some are strictly
positive and some are negative which are forced to be
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Table 1. Performance index [Jdi= j("Ax - b||§ +

2
v [Mx[; ).
Controlier 7*=1E-6 y*=1E-4
Tik-FBL 0.001 [1] 36.64 117.1
Least Squares Problem for
Augmented System: Eq. (23) 27.14 116.9
Table 2. Performance measures.
Max. Max.
Max. .
Total error in | steady-
control ener design state
Controller| input &Y &
(W/m) (J/m) surface | error
(X) (K)
Eq. (22) | 14788 | 4.4305e+6 | 31.34 0.42
Eq. (23)
with | 7572 | 4.4518e+6 | 3127 | 0.42
y*=1E-6
Eq. (23)
with 1857 | 4.4132¢+6 | 31.42 0.45
¥ =1E-4
FBL 7517 | 2.6425e+7 | -31.1 | 0.0005

zero to satisfy the constraint as shown in Figs. 5(c),
(d) and (e). Therefore a larger number of heaters are
used in Figs. 6(d) and (e) compared to Figs. 5(d) and

(e).
Table 1 shows the values of the performance index
of the proposed and Tikhonov-FBL [1] controllers—

the proposed controller with ;/2 =1E-6 has 25% less

cost while the controller with 72 =1E-4 shows no
significant difference, but the cost for having more
uniform temperatures and more participating heaters
(larger 72) increased by a factor of four (27.14
versus 117).

Although the nonlinear optimal controller with
72 =1E-6 has less cost than the case with 7/2 =1E-4, it

generates relatively high peak control inputs in certain
heaters as shown in Fig. 5(c) which may violate heater
capacity.

Performance measures for four different controllers
are shown in Table 2. It is noticed from the Table 2

that the controller defined by (23) with }/2 =1E-4

requires the smallest total energy consumption and
maximum control input while generating similar size
errors to other controllers in the Table 2.

7. CONCLUSION

The design of constrained nonlinear optimal

controllers based on the linear algebraic equivalence
of nonlinear controllers are proposed in the simple
form of constrained linear least squares problem. The
designs are simple, and simultaneously preserve the
characteristics of FBL/SMC and satisfy the input
constraints. The proposed algorithm can be applied to
nonlinear optimal control problem with input
constraints using classic FBL/SMC design methods if
the system can be represented in the normal form, is
affine in control, has invertible decoupling matrix
D(x), and has stable zero dynamics. The designs

have been applied to an input-constrained and ill-
conditioned thermal process, and produced input-
constraint-satisfying solutions. Effect of optimization

parameter }/2 is discussed.
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