• Title/Summary/Keyword: Optimal Control Gain

Search Result 334, Processing Time 0.028 seconds

Gain Scheduled State Feedback and Disturbance Feedforward Control for Systems with Bounded Control Input - Theory (제어입력 크기제한을 갖는 시스템에서 이득 스케줄 상태되먹임-외란앞먹임 제어 - 이론)

  • Kang, Min-Sig
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.59-65
    • /
    • 2007
  • A new optimal state feedback and disturbance feedforward control design in the sense of minimizing $L_2$-gain from disturbance to control output is proposed for disturbance attenuation of systems with bounded control input and measurable disturbance. The controller is derived in the framework of linear matrix inequality(LMI) optimization. A gain scheduled state feedback and disturbance feedforward control design is also suggested to improve disturbance attenuation performance. The control gains are scheduled according to the proximity to the origin of the state of the plant and the magnitude of disturbance. This procedure yields a stable linear time varying control structure that allows higher gain and hence higher performance controller as the state and the disturbance move closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition.

The effects of target and missile dynamics on the optimal coriolis acceleration compensation (미사일 및 표적 운동을 고려한 시선지령유도에서의 코리올리 가속도 보상)

  • 류동영;탁민제;엄태윤;송택렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.596-600
    • /
    • 1992
  • In CLOS guidance, feedback compensation of the Coriolis acceleration is used to reduce miss distance. This paper presents the effects of the bandwidth of target and missile on the optimal Coriolis acceleration compensation. A state space formulation of CLOS guidance is used to implement CLOS guidance in feedback form. And the LQR control method is applied to find the optimal feedback gain. From the analysis of the Riccati equations of the optimal control, the following facts are observed: When the target is agile, the optimal gain is reduced, since the compensation becomes ineffective. The missile bandwidth also affects the Coriolis accleration compensation. Narrower missile requires more compensation for the Coriolis acceleration.

  • PDF

Design method of computer-generated controller for linear time-periodic systems

  • Jo, Jang-Hyen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.225-228
    • /
    • 1992
  • The purpose of this project is the presentation of new method for selection of a scalar control of linear time-periodic system. The approach has been proposed by Radziszewski and Zaleski [4] and utilizes the quadratic form of Lyapunov function. The system under consideration is assigned either in closed-loop state or in modal variables as in Calico, Wiesel [1]. The case of scalar control is considered, the gain matrix being assumed to be at worst periodic with the system period T, each element being represented by a Fourier series. As the optimal gain matrix we consider the matrix ensuring the minimum value of the larger real part of the two Poincare exponents of the system. The method, based on two-step optimization procedure, allows to find the approximate optimal gain matrix. At present state of art determination of the gain matrix for this case has been done by systematic numerical search procedure, at each step of which the Floquet solution must be found.

  • PDF

Robust Tuning of PID Controller With Disturbance Rejection Using Bacterial Foraging Based Optimization

  • Kim, Dong-Hwa;Cho, Jae-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1092-1097
    • /
    • 2005
  • In this paper, design approach of PID controller with rejection function against external disturbance in motor control system is proposed using bacterial foraging based optimal algorithm. Up to the present time, PID Controller has been used to operate for AC motor drive because of its implementational advantages in practice and simple structure. However, it is not easy to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error in the industrial system with disturbance. To design disturbance rejection tuning, disturbance rejection conditions based on $H_{\infty}$ are illustrated and the performance of response based on the bacterial foraging is computed for the designed PID controller as ITSE (Integral of time weighted squared error). Hence, parameters of PID controller are selected by bacterial foraging based optimal algorithm to obtain the required response

  • PDF

Force Control with the PD - Optimal Control of a Robot Manipulator (PD-최적 제어를 이용한 로봇 매니퓰레이터의 FORCE CONTROL)

  • Cho, Byung-Chan;Jung, Yong-Cheol;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.990-993
    • /
    • 1988
  • RMFC (Resolved Motion Force Control) is the method to control the Cartesian force and position using FCC (Force Convergent Control) instead of the complicated dynamic equations of the manipulator. The gain parameters of the controller are adjusted through many trial and errors. In this paper PD-optimal control method is introduced to give optimal gain parameters which minimize the difference between actural acceleration and desired acceleration. To show the validitiesn of the proposed method computer simulations are performed for the two-link manipulator.

  • PDF

Intelligent Control of a Induction Motor Using a Fuzzy Set (퍼지 논리를 이용한 유도 전동기의 지능제어)

  • Kim, Dong-Hwa;Park, Jin-Ill
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2129-2131
    • /
    • 2001
  • Induction motor has been using for industrial field. Up to the present time, the PID controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain without any experience, since the gain of the PID controller has to be manually tuned by trial and error procedures. This paper focuses on the fuzzy control for optimal control of the induction motor in plant. In order to attain optimal control, flux, torque and speed controller has been used and an fuzzy logic based controller has been applied to this system. The results of the fuzzy are compared with the PID controller tuned by the Ziegler-Nickels method, through various simulation based on the various disturbance and step response. The simulation results of the fuzzy control represent a more satisfactory response than those of the conventional controllers.

  • PDF

SDRE-Based Near Optimal Traffic Controller Design (SDRE 기반 준최적 교통 혼잡 제어기 설계)

  • Choi, Han Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1086-1089
    • /
    • 2012
  • We propose a near optimal controller design method for ramp metering based on SDRE (State Dependent Riccati Equation) approach. We parameterize the optimal nonlinear controller in terms of the solution matrices of an SDRE. We also give a simple algorithm to obtain the controller gain. Finally we give numerical results to show the effectiveness of the proposed near optimal traffic controller design method.

Robust missile autopilot design using a generalized singular optimal control technique (최적 제어 기법을 사용한 자동조종장치의 설계)

  • 백운보;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.498-502
    • /
    • 1986
  • A generalized singular linear quadratic control technique is developed to design an optimal trajectory tracking system. The output feedback control law is designed using this technique. The feedback gain matrix is synthesized to minimize tracking errors with pole placement capability to satisfy the control activity requirements. An applications to a bank-to-turn missile coordinated autopilot system design is presented.

  • PDF

Optimal Control of Nuclear Reactors by Digital Computer (전자계산기에 의한 원자로최적제어)

  • 천희영;박귀태
    • 전기의세계
    • /
    • v.26 no.6
    • /
    • pp.66-71
    • /
    • 1977
  • In this paper a method is presented for the optimal control of a nuclear reactor at equilibrium state by use of a digital computer. Using the optimal control theory, we formulate the control problem of the reactor as a discrete-time linear regulator problem. A quadratic performance index is defined. The effects of choosing different performance index weighting matrices to the feedback gain matrix and reactor transient responses are studied for the deterministic optimal control with all state variables accessible to measurement.

  • PDF

Hierarchical State Feedback Control of Large-Scale Discrete-Time Systems with Time-Delays (시간지연이 있는 대규모 이산시간 시스템의 계층적 상태궤환제어)

  • 김경연;전기준
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.8
    • /
    • pp.1161-1166
    • /
    • 1989
  • In this paper, a hierarchical state feedback control method is proposed for the optimal tracking of large-scale discrete-time systems with time-delays. The state feedback gain matrix and the compensation vector are computed from the optimal trajectories of the state variables and control inputs obtained hierarchically by the open-loop control method based on the interaction prediction method. The resulting feedback gain matrix and the compensation vector are optimal for the given initial condition. Computer simulation results show that the proposed method has better control performance and fewer second level iterations than the Tamura method.

  • PDF