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ABSTRACT

The purpose of this project is the presentation
of new method for selection of a scalar control of
linear time-periodic system. The approach has
been proposed by Radziszewski and Zaleski [4] and
utilizes the quadratic form of Lyapunov function.
The system under consideration is assigned either in
closed-loop state or in modal variables as in Calico,
Wiesel [1]. The case of scalar control is considered,
the gain matrix being assumed to be at worst
periodic with the system period T, each element
being represented by a Fourier series. As the
optimal gain matrix we consider the matrix ensuring
the minimum value of the larger real part of the
two Poincare exponents of the system. The method,
based on two-step optimization procedure, allows to
find the approximate optimal gain matrix. At
present state of art determination of the gain matrix
for this case has been done by systematic numerical
search procedure, at each step of which the Floquet

solution must be found.

1. INTRODUCTION

X=P(t), X(tg) =Xy, X€R?, te(ty,) (1)
The time-periodic system under consideration is
of the form (1) where P(t) is periodic with the
period T.
The closed loop state equation of the controlled

system is of the form:

X = [A() + GOK@OK @
where 1 x 2 matrix G(t) describes the distribution of
control in the system and 2 x 1 matrix K(t) is the
gain matrix ( both matrices are assumed to be
periodic with the same period T ). We assumed the
elements of the gain matrix to be represented by

truncated Fourier series,
G - [g,0.8,01"
K@) = [K,(1),K, (0]

K0 = K©O) + 314K o sin 22" 4 BK () cos 2”T’” ]
n~1




2. LYAPUNOYV FUNCTION
Introduce the quadratic form of Lyapunov

function

Vix) = x78x (3)

where S is the constant symmetric, positive-definite
matrix. Introduce also the generalized norm |x|
induced by the scalar product x"Sx. The Lyapunov’s
derivative of (3) along solutions of (1) is of the

form

V-xT(PTS + SPx
Introduce now the auxiliary matrix:

c(ry = S'PTS + P 1C))

Due to the periodicity of P(t) the matrix P(t) the
matrix C(t) is periodic. The eigenvalues of the
matrix C(t) are the same as these the symmetric
matrix (PTS+SP) and thus they are real. Denoting

by L, (t) (also periodic ) the maximal eigenvalue

‘max

of the matrix C(t), the estimation holds

V() < Vixp) exp [ J'OTle(t)dt] ®)

Denoting

1 T
A- = L L, (0dt
we get the estimation of the induced norm at the
solution
Ix(D I, < Ix©O) exp[A]

Thus A will serve as the estimation of the real part

of the maximal Poincare exponent.

elei S

3. ANALYSIS
The maximum eigenvalue of the matrix C(t) is

of the form

rC
.
2

L0 - (T’TC)2 + detC

By direct computation one can see that the trace
TrC of the matrix C(t) depends only on the
coefficients of the Fourier series, while the
determinant detC depends as on these coefficients

as on the elements of the matrix S

TrC = TrC (1,K(0), AK (1),,4K (m), BK (1),,BK (m)),
i-12

detC = detC (1,K(0),AK (1),,4K (m), BK(1),,BK,(m),
S ,5...8

10512:815,), 1= 1,2
This fact implies the two-sub-step procedure of
optimization of A. At the first sub-step the quantity
A is minimized while varying the values of the
elements of the matrix S and freezing the values of
the Fourier series coefficients. At the second sub-
step A is minimized while varying the values of the
Fourier series coefficients and freezing the
previously chosen values of the elements of the
matrix S. This procedure is continued till the
improvement of the value of A becomes negligibly
small. The simplification of the problem may be
achieved by using the Cauchy-Schwartz inequality to
approximate the integral in the expression for A.
Two possible representations of the matrix S

were considered. The first one utilized the relation

S=-M'DM (6)



where M is an orthogonal matrix, D is diagonal
one, such that the element d;;=1and d,>0. For

the second representation
)

the positive definiteness condition is given directly

a - B2 >0 ®

The form (7) of the matrix S was selected for
programming. For the first sub-step the program
require the constrained minimization method. The
Box’s Complex Method was selected for this
purpose. For the second sub-step the Simplex
Method was applied.
4. MAIN RESULTS

The following examples are the practical
applications and results that are derived from the
numerical optimization procedures.
Example 1

The system of the form (2) was selected with

the goal to determine the gain matrix minimizing

the larger part of the Poincare exponent.

0.1 0
4= t 0 —0.1]
G() - [sint -sint]
5
K(t) = KQ) + ):1 (4K (msin 2%+ BK (n)cos 2"T”‘]
i-12

The initial gain matrix was chosen as having all the
coefficients equal to zero. For these values
A=+0.1which shows instability of the system.
Table 1 summarizes the values of gains from the
optimization procedure for example 1. The

resulting Poincare exponent estimate attains the

227

value A=-0.10999806 <0 showing that the system is

stabilized.
i 1 2
K, (0) 0.0918 0.2195
AK(1) -1.0440 0.0129
BK;(1) 0.0475 0.4887
AK,(2) 0.1236 -0.0049
BKi(2) 0.4224 0.4305
AK,(3) 0.0562 -0.0138
BK;(3) 0.3383 0.4781
AK,(4) 0.1055 -0.0047
BK,(4) 0.2163 0.4349
AK,(5) 0.7579 0.2270
BK;(5) 0.0411 0.2440

Table T. Output Data for Example 1

Example 2

The system quoted after [3] is of the form (1)

-1 + acos’t

1 - asintcost| (9)
-1 - asintcost

-1 + asin’

P@) - [

A closed-form solution of the system is known and

is given by

0
(0 e“Vreost e tsint| ¥ (10)
X, () -e@Vising e cost| |x)

for all values of a. The solution (10) shows that

asymptotic stability requires that a<1and that for
all values of a<0 the value of A may not be less

than -1. Rewriting the system in form (2) gives

X - [A(®) + G(OK® Ix,
P(r) = A@t) + G(OK()

- [:11 _11} + [ffl“;t’} [acost -asint]

For selected series of initial values of a as shown
at the Table 2 the results of procedure converge
with the error of 0.09% to the expected value of

A=-1.



Initial value of a A
-2 -0.9999996
-5 -0.9999994
0 -0.9998086
2 -0.9991928
5 -0.9993884

Table 2. Output Data for Example 2
5. CONCLUSIONS

The active control of linear, time-periodic
system has been considered and pole placement
techniques have been developed by using Lyapunov
quadratic function. Example 2 shows that if
converges to the lower limit of the exact value of
the system Poincare exponent. The close to optimal
method that is introduced in this project will enable
to control the linear time-periodic system and scalar
control of two modes resulting in easier and simpler
control system. Finally, analysis of the gain
function is provided estimating their influence
about the objective time-periodic systems. The
conclusion of this project gives general approaching

way using computational method for design

controller of linear time-periodic systems.
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