
 

 
1. INTRODUCTION 

 
A Proportional – Integral – Derivative (PID) controller has 

been widely used in the most industrial processes despite 
continual advances in control theory. This is not only due to 
the simple structure which is theoretically easy to understand 
but also to the fact that the tuning technique provides adequate 
performance in the vast majority of applications. However, it 
cannot effectively control such a complicated or fast running 
system such as motor control system, since the response of a 
plant depends on only the three parameters (P, I, and D) and 
its gain has to be manually tuned by trial and error in the 
industrial world. Most of the PID tuning rules developed in the 
past years use the conventional method such as 
frequency-response methods [1]. This method needs a highly 
technical experience to apply since they provide simple tuning 
formulae to determine the PID controller parameters. In case 
of the Ziegler-Nichols rule tuning technique, it often leads to a 
rather oscillatory response to set-point changes as the 
following system [2]: 

(a) Plant which the system has non-linearities such as 
directionally dependent actuator and plant dynamics 

(b) System that various uncertainties, such as modeling 
error and external disturbances, are involved in the system. 

As a result of these difficulties, the PID controllers are 
rarely tuned optimally and the engineers need to research for a 
highly tuning technology.  

To improve the performance of PID controller tuning for 
processes with changing dynamic properties, several tuning 
strategies for PID controller have been proposed, for example, 
automatic tuning PID, adaptive PID, and intelligent controller. 
These controllers have recalibration features to cope with little 
a priori knowledge and significant changes in the process 
dynamics [4]. 

However, the PID controller parameters are still computed  
 
 

 

using the classic tuning formulae and, as noted above, these 
do not provide good control performance in all situations, for 
example, for unstable systems with time delay. De Paor used 
the Modified Smith Predictors to cope with unstable and 
integrating process with long time delay. 

In order to provide consistent, reliable, safe and optimal 
solution to industrial control problems as described above, 
many approaches for PID control schemes and tuning 
techniques have been presented. These schemes generally 
consist of four basic parts: model estimation, desired system 
specifications, optimal tuning mechanism and an online PID 
controller.  

Over the past 50 years, several methods for determining 
PID controller parameters have been developed for stable 
processes that are suitable for auto-tuning and adaptive control 
[1-10]. Some employ information about open-loop step 
response, for example, the Coon-Cohen reaction curve 
method; other methods use knowledge of the Nyquist curve, 
for example, the Ziegler-Nichols frequency-response method 
[3]. However, these tuning methods use only a small amount 
of information about the dynamic behavior of the system, and 
often do not provide good tuning. It is known that gain and 
phase margins (GPM) have served as important measures of 
robustness [3,7,8]. The phase margin is related to the damping 
of the system from classical control theories, and therefore 
also serves as a performance measurement. Their solutions are 
normally obtained numerically or graphically by 
trial-and-error use of Bode plots. 
Despite the fact that many PID tuning methods are available 
for achieving the specified GPM, they can be divided into two 
categories. Firstly, approximation of tan¡1 function is adopt to 
simplify the problem, but they are only applicable to the 
simple models [4,9]. Secondly, inverse function mapping was 
done by fuzzy neural network (FNN). The FNN identify the 
relationship between GPM and PID controllers, which is 
available for general linear system [5]. For solving the 
problem, the first obstacle is the difficulty in finding the 
stabilizing region of PID controllers. The solution is a 
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necessary first step to any rational design of PID controllers 
based on GPM.  
On the other hand, since natural selection of bacterial foraging 
tends to eliminate animals with poor foraging strategies for 
locating, handling, and ingesting food, optimization models 
can be provided for social foraging where groups of 
parameters communicate to cooperatively forage in 
engineering. 

In this paper, an intelligent tuning method of PID controller 
by bacterial foraging based optimal algorithm is suggested for 
robust control with disturbance rejection function on control 
system of motor control loop. 

 
 

2. PID CONTROLLER TUNING WITH 
DISTURBANCE REJECTION FUNCTION 

 
2.1. Condition for Disturbance Rejection 
 

In Fig. 1, the disturbance rejection constraint can be given 
by [7,8] 
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level and ∞•  denotes the ∞H -norm, which is defined as  

 

)(max)(
),0[

ω
ω

jGsG
∞∈∞

= .           (2) 

 
The disturbance rejection constraint becomes 

( ) )3(),(max

),(),(),(),(1
)()(max

)(),(1
)(

5.0

).0[

5.0

).0[

c

cjGcjKcjGcjK
jwjw

sGcsK
sw

ωσ

ωωωω
ωω

ω

ω

∞∈

∞∈

∞

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+

−

=
+

                                             
The controller K (s, c) is written as 
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The vector c of the controller parameter is given by 
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Hence, the condition for disturbance rejection is given as  
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2.2 Performance Index for Disturbance Rejection 
Controller Design 

 
The performance index defined as ITSE (Integral of the 

Time-Weighted Square of the Error) is written by   
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Because E(s) contains the parameters of the controller (c) and 

plant, the value of performance index, PI for a system of nth 
order can be minimized by adjusting the vector c as follows 
[7]: 
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                    (7) 

The optimal tuning proposed in this paper is to find the vector 
c, such that the ITSE performance index, PI (c) is a minimum 
using bacterial algorithm and the constraint 
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),(max c  is satisfied through real coded bacterial 

algorithms.  
 

3. BEHAVIOR CHARACTERISTICS AND 
MODELING OF BACTERIA FORAGING 

 
Since selection behavior of bacteria tends to eliminate 

animals with poor foraging strategies and favor the 
propagation of genes of those animals that have successful 
foraging strategies, they can be applied to have an optimal 
solution through methods for locating, handling, and ingesting 
food. After many generations, a foraging animal takes actions 
to maximize the energy obtained per unit time spent foraging. 
That is, poor foraging strategies are either eliminated or 
shaped into good ones. Optimization models are also valid for 
social foraging where groups of animals communicate to 
cooperatively forage, in the face of constraints presented by its 
own physiology such as, sensing and cognitive capabilities 
and environment.  

As mentioned in the above, foraging can be modeled as an 
optimization process, which sometimes operates in swarms, 
and the relevance of these areas to optimization.  

Foraging theory is described in Refs. 5-7. Foraging 
behavior of bacteria can be found using, for instance, dynamic 
programming. Search and optimal foraging decision-making 
of animals can be used to engineering. Selection behavior or 
bacteria forage as individuals and others forage as groups. 
While to perform social foraging an animal needs 
communication capabilities, it can gain advantages in that it 
can exploit essentially the sensing capabilities of the group, 
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Fig. 1. Control system with disturbance. 
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the group can gang-up on large prey, individuals can obtain 
protection from predators while in a group, and in a certain 
sense the group can forage with a type of collective 
intelligence. This paper describes the optimal parameter 
selection of a PID controller using bacteria foraging. 

 
3.1 Over view of Chemotactic Behavior of E. coli. 
 

This paper considers the foraging behavior of E. coli, which 
is a common type of bacteria as in reference 4-5. Its behavior 
to move comes from a set of up to six rigid 100–200 rps 
spinning flagella, each driven as a biological motor. An E. coli 
bacterium alternates between running and tumbling. Running 

speed is 10–20 sec/mµ , but they cannot swim straight. When 
we can summarize the chemotactic actions of bacteria as the 
following description:  

- If in neutral medium, alternate tumbles and runs, its action 
is having search.  

- If swimming up a nutrient gradient (or out of noxious 
substances), swim longer (climb up nutrient gradient or down 
noxious gradient)its behavior seeks increasingly favorable 
environments.  

- If swimming down a nutrient gradient (or up noxious 
substance gradient), then search action is avoiding unfavorable 
environments. 

So, it can climb up nutrient hills and at the same time avoid 
noxious substances. The sensors it needs for optimal 
resolution are receptor proteins which are very sensitive and 
high gain. That is, a small change in the concentration of 
nutrients can cause a significant change in behavior. This is 
probably the best-understood sensory and decision-making 
system in biology.  

Mutations in E. coli affect the reproductive efficiency at 

different temperatures, and occur at a rate of about 710− per 
gene and per generation. E. coli occasionally engages in a 
conjugation that affects the characteristics of a population of 
bacteria. Since there are many types of taxes that are used by 
bacteria such as, aerotaxis (it are attracted to oxygen), light 
(phototaxis), temperature (thermotaxis), magnetotaxis (it it can 
be affected by magnetic lines of flux. Some bacteria can 
change their shape and number of flagella which is based on 
the medium to reconfigure in order to ensure efficient foraging 
in a variety of media. Bacteria can form intricate stable 
spatio-temporal patterns in certain semisolid nutrient 
substances. They can eat radially their way through a medium 
if placed together initially at its center. Moreover, under 
certain conditions, they will secrete cell-to-cell attractant 
signals so that they will group and protect each other. These 
bacteria can swarm. 

 
 

3.2 Optimization Function of Bacterial Swarm Foraging 
 
The main goal based on bacterial foraging is to apply in 

order to find the minimum of nRP ∈φφ),( , not in the 
gradient )(φP∇ . Here, when φ is the position of a bacterium, 
and )(φJ  is an attractant-repellant profile. That is, it means 
where nutrients and noxious substances are located, so P<0, 
P=0, P>0 represent the presence of nutrients. A neutral 
medium, and the presence of noxious substances, respectively 
can showed by 

},...,2,1),,({),,( NilkjlkjH i == φ
.             (1) 

Equation represents the positions of each member in the 

population of the N bacteria at the jth chemotactic step, kth 
reproduction step, and lth elimination-dispersal event. Let P(i, 
j, k, l) denote the cost at the location of the ith bacterium 

ni Rlkj ∈),,(φ . Reference [20, 21] let  
)()((),,(),,1( jiClkjlkj ii ϕφφ +=+= ,        (2) 

so that C(i)>0 is the size of the step taken in the random 

direction specified by the tumble. If at ),,1( lkji +φ  the cost 

J(i, j+1, k, l) is better (lower) than at ),,( lkjiφ , then another 
chemotactic step of size C(i) in this same direction will be 
taken and repeated up to a maximum number of steps Ns . Ns 
is the length of the lifetime of the bacteria measured by the 

number of chemotactic steps. Functions )(φi
cP , i=1, 2, . . . , S, 

to model the cell-to-cell signaling via an attractant and a 
repellant is represented by [20, 21] 
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When we where T

p ][ ,...,1 φφφ =  is a point on the 
optimization domain, Lattract is the depth of the attractant 

released by the cell and attractδ  is a measure of the width of 
the attractant signal. attractrepellant LK =  is the height of the 

repellant effect magnitude), and attractδ  is a measure of the 
width of the repellant. The expression of )(φcP  means that 
its value does not depend on the nutrient concentration at 

position φ . That is, a bacterium with high nutrient 
concentration secrets stronger attractant than one with low 
nutrient concentration. Model use the function )(φarP  to 
represent the environment-dependent cell-to-cell signaling as 

 
( )( ) ( )φφφ car PPTP −= exp)(                (4) 

 
where T is a tunable parameter. Model consider 

minimization of P(i, j, k, l )+ ( )( )lkjP i
ar ,,φ , so that the 

cells will try to find nutrients, avoid noxious substances, and 
at the same time try to move toward other cells, but not too 

close to them. The function ( )( )lkjP i
ar ,,φ  implies that, with 

M being constant, the smaller ( )φP , the larger Par (φ ) and 
thus the stronger attraction, which is intuitively reasonable. In 
tuning the parameter M, it is normally found that, when M is 
very large, Par (φ ) is much larger than ( )φJ , and thus the 
profile of the search space is dominated by the chemical 
attractant secreted by E. coli. On the other hand, if T is 
very small, then Par (φ ) is much smaller than ( )φP , and 
it is the effect of the nutrients that dominates. In Par (φ ), 
the scaling factor of Pc (φ ) is given as in exponential 
form.  

This paper describes the method in the form of an 
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algorithm to search optimal value of PID parameter. 
[step 1] Initialize parameters n, N, NC, NS, Nre, Ned, Ped, 
C(i)( i=1,2,…,N), iφ , and random values of PID 
parameter. Where,   
n: Dimension of the search space ( Each Parameter of 
PID controller), 
N: The number of bacteria in the population, 
NC : chemotactic steps, 
Nre : The number of reproduction steps, 
Ned : the number of elimination-dispersal events, 
Ped : elimination-dispersal with probability,  
C(i): the size of the step taken in the random direction 
specified by the tumble. The controller parameter is 
searched in the range of Kp=[0 30], Ti=[0 30], and 
Td=[0 30]. 
[step 2]  Elimination-dispersal loop: l=l+1  
[step 3] Reproduction loop: k=k+1 
[step 4]Chemotaxis loop: j=j+1 
    [substep a] For i =1,2,…,N, take a chemotactic step 

for bacterium i as follows.  
[substep b] Compute ITSE (i ,j, k, l). 
[substep c] Let ITSElast=ITSE (i,j,k,l) to save this 

value since we may find a better cost via a run. 
[substep d] Tumble: generate a random vector 
∆(i) nR∈ with each element 

,,...,2,1),( pmim =∆  a randonumber on [-1, 1]. 
[substep e] Move: Let 

)()(
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ii

iiClkjlkj
T

ii

∆∆

∆
+=+ φφ  

This results in a step of size )(iC in the direction 
of the tumble for bacterium i. 

[substep f] Compute ITSE ),,1,( lkji + . 
[substep g] Swim 

i) Let m=0 (counter for swim length). 
ii) While m< sN (if have not climbed down too 

long). 
 • Let m=m+1. 
 • If ITSE <+ ),,1,( lkji ITSElast ( (if doing 

better), let ITSElast=ITSE ),,1,( lkji + and 
let 

)()(

)()(),,1(),,1(
ii

iiClkjlkj
T

ii

∆∆

∆
++=+ φφ  

   and use this ),,1( lkji +φ  to compute the 
new ITSE ),,1,( lkji + as we did in [substep 
f] 

• Else, let m= sN . This is the end of the while 
statement.  

[substep h] Go to next bacterium (i, 1) if Ni ≠ (i.e., 
go to [substep b] to process the next bacterium). 

[step 5]  If CNj < , go to step 3. In this case, continue 
chemotaxis, since the life of the bacteria is not over. 
[step 6]  Reproduction: 
    [substep a]  For the given k and l, and for each 

,,...,2,1 Ni =  let 

∑
+

=

=
1

1

),,,(
cN

j

i
health lkjiITSEITSE  

be the health of bacterium i (a measure of how 
many nutrients it got over its lifetime and how 
successful it was at avoiding noxious 
substances). Sort bacteria and chemotactic 
parameters )(iC in order of ascending cost 

healthITSE (higher cost means lowerhealth). 
[substep b] The rS  bacteria with the highest 

healthITSE values die and the other rS  bacteria 
with the best values split (and the copies that are 
made are placed at the same location as their 
parent). 

[step 7] If reNk < , go to [step 3]. In this case, we have 
not reached the number of specified reproduction steps, 
so we start the next generation in the chemotactic loop. 
[step 8] Elimination-dispersal: For ,...,2,1 Ni =  with 
probability edP , eliminate and disperse each bacterium 
(this keeps the number of bacteria in the population 
constant). 
To do this, if you eliminate a bacterium, simply disperse 
one to a random location on the optimization domain. If 

edNl < , then go to [step 2]; otherwise end. 
 

4. SIMULATIONS AND DISCUSSIONS 

 
 
 

 
Fig. 3. Step response by variation of chemotactic step size. 

Fig. 2. Simulink block diagram for simulation of bacterial 
based optimization. 
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Fig. 4. Comparison of each optimal algorithm. (GA, Immune 
algorithm, Bacteria Foraging) 

 
Fig. 5. Search process of performance index (ITSE) by 
Bacteria Foraging.  

 

 
Fig. 6. Search process of optimal PID parameters by Bacteria 
Foraging. 

 

 
Fig. 7. Step response to a type of sine wave disturbance. 

 
Table 1. The value of PID parameter and ITSE to variation of 

chemotactic step size. 
Chemotactic  
step size ITSE Kp Ti Td 

Che_size=0.01 0.094163 3.0605 0.076235 1.1411 

Che_size=0.05 0.003656 13.704 0.2733 8.773 

Che_size=0.15 0.000678 30 0.23208 25.844 

Che_size=0.2 0.000668 29.901 0.25813 30 
 

 
Table 2. Comparison of PID parameter and ITSE of each 

optimal algorithm. 
 Bacteria 

Foraging 
GA[1] Immune 

Algorithm 
Kp 29.901 29.992 29.739 
Ti 0.25813 0.0001 0.39477 
Td 30 28.3819 27.277 
ITSE 0.000668 0.000668 0.0006352 

 
Fig. 3 shows the step response to variation of 
chemotactic size. When step size is 0.15 response is best 
response. Fig. 4 is comparison of results by GA (genetic 
algorithm), immune algorithm, and bacterial foraging. 
Fig. 5 is representing search process of performance 
index (ITSE) by bacteria foraging and Fig. 6 is search 
process to have optimal PID parameters by bacteria 
foraging. Fig. 7 is step response to a type of sine wave 
disturbance. 

 
 

5. CONCLUSIONS 
 
Up to now, the PID controller has been used to operate 
the process loops including motor control. However, 
achieving an optimal PID gain is very difficult for the 
control loop with disturbances. Since the gain of the 
PID controller has to be tuned manually by trial and 
error. Tuning of the PID controller may not cover a 
plant with complex dynamics, such as large dead time, 
inverse response, and a highly nonlinear characteristic 
without any control experience. 
Since natural selection of animal tends to eliminate 
animals with poor foraging strategies for locating, 
handling, and ingesting food, they obtain enough food 
to enable them to reproduce after many generations, 
poor foraging strategies are either eliminated or shaped 
into good ones redesigned. Therefore, optimization 
approach can be provided for social foraging where 
groups of parameters communicate to cooperatively 
forage in engineering. 
In this paper, an intelligent tuning method of PID 
controller by bacterial foraging based optimal algorithm 
is suggested for robust control with disturbance 
rejection function on control system of motor control 
loop. Simulation results are showing satisfactory 
responses. The object function can be minimized by 
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gain selection for control, and the variety gain is 
obtained as shown in Table 1 and 2. The suggested 
controller can also be used effectively in the control 
system as seen from Figs. 3-7. 
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