• Title/Summary/Keyword: Optical power scaling

Search Result 17, Processing Time 0.02 seconds

A Power-adjustable Fully-integrated CMOS Optical Receiver for Multi-rate Applications

  • Park, Kangyeob;Yoon, Eun-Jung;Oh, Won-Seok
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.623-627
    • /
    • 2016
  • A power-adjustable fully-integrated CMOS optical receiver with multi-rate clock-and-data recovery circuit is presented in standard 65-nm CMOS technology. With supply voltage scaling, key features of the optical receiver such as bandwidth, power efficiency, and optical sensitivity can be automatically optimized according to the bit rates. The prototype receiver has −23.7 dBm to −15.4 dBm of optical sensitivity for 10−9 bit error rate with constant conversion gain around all target bit rates from 1.62Gbps to 8.1 Gbps. Power efficiency is less than 9.3 pJ/bit over all operating ranges.

Multi-kilowatt Single-mode Ytterbium-doped Large-core Fiber Laser

  • Jeong, Yoon-Chan;Boyland, Alexander J.;Sahu, Jayanta K.;Chung, Seung-Hwan;Nilsson, Johan;Payne, David N.
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.416-422
    • /
    • 2009
  • We have demonstrated a highly efficient cladding-pumped ytterbium-doped fiber laser, generating $>$2.1 kW of continuous-wave output power at 1.1 μm with 74% slope efficiency with respect to launched pump power. The beam quality factor ($M^2$) was better than 1.2. The maximum output power was only limited by available pump power, showing no evidence of roll-over even at the highest output power. We present data on how the beam quality depends on the fiber parameter, based on our current and past fiber laser developments. We also discuss the ultimate power-capability of our fiber in terms of thermal management, Raman nonlinear scattering, and material damage, and estimate it to 10 kW.

High-power Quasi-continuous Wave Operation of Incoherently Combined Yb-doped Fiber Lasers

  • Jeon, Minjee;Jung, Yeji;Park, Jongseon;Jeong, Hoon;Kim, Ji Won;Seo, Hongseok
    • Current Optics and Photonics
    • /
    • v.1 no.5
    • /
    • pp.525-528
    • /
    • 2017
  • High-energy, high-power, quasi-continuous wave (QCW) operation of double-clad Yb fiber lasers incorporating an incoherent signal combiner is reported. We constructed four efficient, high-power Yb fiber lasers, each of which produced rectangular pulses at 1080 nm with a pulse energy greater than 15 J, and a pulse duration of 10 ms at a repetition rate of 10 Hz, corresponding to an average power of over 150 W and a peak power of over 1.5 kW for ~200 W of incident pump power at 915 nm. These laser outputs were combined by a homemade incoherent fiber signal combiner with low loss, yielding a maximum peak power of ~6.0 kW in a beam with $M^2{\approx}12.5$. The detailed laser characteristics and prospects for further power scaling in QCW operation are discussed.

An Anti-occlusion and Scale Adaptive Kernel Correlation Filter for Visual Object Tracking

  • Huang, Yingping;Ju, Chao;Hu, Xing;Ci, Wenyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2094-2112
    • /
    • 2019
  • Focusing on the issue that the conventional Kernel Correlation Filter (KCF) algorithm has poor performance in handling scale change and obscured objects, this paper proposes an anti-occlusion and scale adaptive tracking algorithm in the basis of KCF. The average Peak-to Correlation Energy and the peak value of correlation filtering response are used as the confidence indexes to determine whether the target is obscured. In the case of non-occlusion, we modify the searching scheme of the KCF. Instead of searching for a target with a fixed sample size, we search for the target area with multiple scales and then resize it into the sample size to compare with the learnt model. The scale factor with the maximum filter response is the best target scaling and is updated as the optimal scale for the following tracking. Once occlusion is detected, the model updating and scale updating are stopped. Experiments have been conducted on the OTB benchmark video sequences for compassion with other state-of-the-art tracking methods. The results demonstrate the proposed method can effectively improve the tracking success rate and the accuracy in the cases of scale change and occlusion, and meanwhile ensure a real-time performance.

High Power 1.83 GHz Femtosecond Yb-doped Fiber Laser Incorporating Repetition Rate Multipliers

  • In Chul Park;Eun Kyung Park;Ye Jin Oh;Hoon Jeong;Ji Won Kim;Jeong Sup Lee
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.732-737
    • /
    • 2023
  • A high-power Yb-doped femtosecond (fs) fiber laser at a repetition rate of 1.83 GHz is reported. By employing a 5-stage repetition rate multiplier, the repetition rate of the mode-locked master oscillator was multiplied from 57.1 MHz to 1.83 GHz. The ultrashort pulse output at 1.83 GHz was amplified in a two-stage Yb-doped fiber amplifier, leading to >100 W of fs laser output with a pulse duration of 290 fs. The theoretical pulse width along the fiber was simulated, showing that it was in good agreement with experimental results. Further improvement in power scaling is discussed.

An RGB to RGBY Color Conversion Algorithm for Liquid Crystal Display Using RGW Pixel with Two-Field Sequential Driving Method

  • Hong, Sung-Jin;Kwon, Oh-Kyong
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.777-782
    • /
    • 2014
  • This paper proposes an RGB to RGBY color conversion algorithm for liquid crystal display (LCD) using RGW pixel structure with two-field (yellow and blue) sequential driving method. The proposed algorithm preserves the hue and saturation of the original color by maintaining the RGB ratio, and it increases the luminance. The performance of the proposed RGBY conversion algorithm is verified using the MATLAB simulation with 24 images of Kodak lossless true color image suite. The simulation results of average color difference CIEDE2000 (${\delta}E^*_{00}$) and scaling factor are 0.99 and 1.89, respectively. These results indicate that the average brightness is increased 1.89 times compared to LCD using conventional RGB pixel structure, without increasing the power consumption and degrading the image quality.

All-fiber Tm-Ho Codoped Laser Operating at 1700 nm

  • Park, Jaedeok;Ryu, Siheon;Yeom, Dong-Il
    • Current Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.356-360
    • /
    • 2018
  • We demonstrate continuous-wave operation of an all-fiber thulium-holmium codoped laser operating at a wavelength of 1706.3 nm. To realize laser operation in the short-wavelength region of the emission-band edge of thulium in silica fiber, we employ fiber Bragg gratings having resonant reflection at a wavelength around 1700 nm as a wavelength-selective mirror in an all-fiber cavity scheme. We first examine the performance of the laser by adjusting the central wavelength of the in-band pump source. Although a pump source possessing a longer wavelength is observed to provide reduced laser threshold power and increased slope efficiency, because of the characteristics of spectral response in the gain fiber, we find that the optimal pump wavelength is 1565 nm to obtain maximum laser output power for a given system. We further explore the properties of the laser by varying the fiber gain length from 1 m to 1.4 m, for the purpose of power scaling. It is revealed that the laser shows optimal performance in terms of output power and slope efficiency at a gain length of 1.3 m, where we obtain a maximum output power of 249 mW for an applied pump power of 2.1 W. A maximum slope efficiency is also estimated to be 23% under these conditions.

Polarization-maintained Single-mode 400-W Yb-doped Fiber Laser with 2.5-GHz Linewidth from a 3-stage MOPA System (3단 MOPA 시스템에서 2.5 GHz 선폭을 가지는 편광유지 단일모드 400 W 이터븀 첨가 광섬유 레이저 연구)

  • Park, Young Ho;Youn, Young Seok;Jung, Min Wan;Jun, Changsu;Yu, Bong-Ahn;Shin, Woojin
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.4
    • /
    • pp.159-165
    • /
    • 2018
  • In this paper, we report on the high power amplification of a narrow-linewidth Yb-doped polarization-maintained (PM) fiber laser in a 3-stage, all-fiber master oscillator power amplifier (MOPA) system. The linearly polarized single-mode output power was 400 W with an 85% slope efficiency, with a linewidth of 2.5 GHz (full width at half maximum). Furthermore, mitigation of mode instability (MI) has been demonstrated by tightly coiling the gain fiber to a diameter of 11 cm. In addition, methods for higher power scaling are discussed.

Generation of Radially or Azimuthally Polarized Laser Beams in a Yb:YAG Thin-disc Laser

  • Ye Jin Oh;In Chul Park;Eun Kyoung Park;Jiri Muzik;Yuya Koshiba;Pawel Sikocinski;Martin Smrz;Tomas Mocek;Hoon Jeong;Ji Won Kim
    • Current Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.416-420
    • /
    • 2024
  • A high-power Yb:YAG thin-disc laser with radial or azimuthal polarization incorporating an intracavity S-waveplate is reported. Depending on the rotational angle of the S-waveplate placed in the cavity, a Yb:YAG thin-disc laser yields 10.8 W and 10.2 W of continuous-wave outputs with radial and azimuthal polarization for an incident pump power of 131 W, corresponding to slope efficiencies of 22.9% and 23.7%, respectively. The output characteristics for each polarization state were investigated in detail by analyzing the insertion loss and the mode overlap efficiency due to the S-waveplate. Further prospects for power scaling will be discussed.

Quasi-continuous-wave Yb-doped Fiber Lasers with 1.5 kW Peak Power (첨두 출력 1.5 kW급 준연속 이터븀 첨가 광섬유 레이저)

  • Jeon, Minjee;Jung, Yeji;Kim, Jiwon;Jeong, Hoon
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.3
    • /
    • pp.95-100
    • /
    • 2016
  • High-power quasi-continuous-wave (qcw) operation in Yb-doped double-clad fiber lasers with near-diffraction-limited quality of the output beam is reported. Based on numerical simulation, we built a simple, all-fiberized Yb fiber laser, and a fiber-based master-oscillator power amplifier (MOPA). Both laser systems have successfully produced qcw output with average power greater than 150 W at 1080 nm and 10 ms pulse duration at 10 Hz repetition rate, corresponding to a peak power greater than 1.5 kW for 205 W of pump power at 976 nm. Laser performance, including beam quality and slope efficiency, was characterized in both configurations. Prospects for power scaling and applications are discussed.