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Abstract 
 

Focusing on the issue that the conventional Kernel Correlation Filter (KCF) algorithm has 
poor performance in handling scale change and obscured objects, this paper proposes an 
anti-occlusion and scale adaptive tracking algorithm in the basis of KCF. The average 
Peak-to Correlation Energy and the peak value of correlation filtering response are used as 
the confidence indexes to determine whether the target is obscured. In the case of 
non-occlusion, we modify the searching scheme of the KCF. Instead of searching for a target 
with a fixed sample size, we search for the target area with multiple scales and then resize it 
into the sample size to compare with the learnt model. The scale factor with the maximum 
filter response is the best target scaling and is updated as the optimal scale for the following 
tracking. Once occlusion is detected, the model updating and scale updating are stopped. 
Experiments have been conducted on the OTB benchmark video sequences for compassion 
with other state-of-the-art tracking methods. The results demonstrate the proposed method 
can effectively improve the tracking success rate and the accuracy in the cases of scale 
change and occlusion, and meanwhile ensure a real-time performance. 
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1. Introduction 

Visual tracking is to locate a moving object in a video sequence and has been a core 

problem in computer vision with wide-ranging applications in video surveillance, robot 
perception, intelligent vehicles and human-machine interfaces. In recent years, with the 
introduction of Kernel Correlation Filter and machine learning technology, the performance 
of visual object tracking has been greatly improved. However, the problems regarding to 
multi-scales and obscured objects have not been solved well. This paper addresses on these 
issues and exploits the properties of the conventional Kernel Correlation Filter to achieve an 
anti-occlusion and scale adaptive object tracker. 

Visual object tracking can be divided into two main categories: generative model methods 
and discriminant model methods. The generative model methods model the target region in 
the current frame and search for the region similar to the model in the next frame to 
determine the predicted position. The methods include Kalman Filtering, Particle Filter, 
Mean Shift and so on. Discriminant model methods take the target area as the positive 
sample in the current frame and the background area as the negative sample to train a 
classifier, and search for the optimal area with the trained classifier in the next frame. 
Classical discriminant model methods include structured output tracking with kernels 
(STRUCK) [1] and tracking-learning-detection (TLD) [2]. Different from generative model 
methods, discriminative model methods use machine learning to train a classifier that can 
effectively distinguish between foreground and background. In general, discriminant model 
methods have a better tracking performance than generating model methods. 

Bolme et al. [3] proposed a Minimum Output Sum of Squared Error algorithm (MOSSE) 
and firstly introduced a correlation filter for tracking. Correlation is a measure of the 
similarity between two signals. The higher the correlation, the more similar the two signals 
are. For tracking purpose, it is to design such a filter whose response reaches its maximum 
when it acts on the tracking target. Henriques et al. [4] proposed a Circulant Structure of 
Tracking-by-detection with kernels algorithm (CSK) based on the MOSSE algorithm. The 
CSK used a cyclic matrix to conduct dense sampling, therefore, the characteristics of the 
entire picture was used. In the meantime, the CSK formed a non-linear classifier by 
introducing a kernel function so that the classifier worked in a high dimensional feature 
space. This mechanism well solved the problems in the cases of low-dimensional linear 
inseparable or non-linear separable. However, the CSK does not solve the problems of gray 
scale features and boundary effects caused by the circular matrix. Furthermore, they 
proposed Kernel Correlation Filter algorithm (KCF) [5] to optimize for multichannel features 
and kernel methods. They used the multi-channel HOG feature to replace the single-channel 
gray feature and a Gaussian kernel function to optimize the operation. However, since the 
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bounding boxes in the KCF were fixed and the target size may change from time to time, the 
bounding boxes may drift during the tracking process, resulting in a failure of tracking. Also, 
the KCF did not work in the case that the target is obscured during a tracking process. 

In order to solve the multi-scales problem, Li et al. [6] adopted the KCF algorithm to train 
a filter with HOG and CN features, and used a multi-scaled template to search for the target 
by shifting the filter around the image. Danelljan et al. [7] used only HOG features and 
proposed the Discriminative Scale Space Tracking (DSST) method. Discriminative 
Correlation Filter (DCF) was used to detect the target translational position. They also 
learned a correlation filter based on a scale pyramid representation to detect scale changes, 
which was the first time that translation filtering is combined with scale filtering. And later, 
they put forward a series of accelerated DSST [8] methods and achieved a better real-time 
performance. Similar to DSST method, Pan et al. [9] exploited the scale pyramid strategy to 
map the image pyramids into a one-dimensional eigenvector that is used as input of a scale 
correlation filter. The target scale is estimated from the highest filter response. 

Occlusion problem can be considered as a long-term tracking problem. The key is to 
determine whether the target is obscured. In recent years, some methods [10,11] have been 
proposed for this issue, such as the use of the partitioning method to track the target. The 
basic idea of the partitioning method is to divide the target into different parts to learn the 
features, track them separately, and finally combine the tracked parts together to get the 
position of the target. In addition, Ma et al. [12] proposed a long-term correlation tracking 
algorithm. In the basis of the translation-correlation filtering and a scale-correlation filtering 
of DSST, they also added the third filter to measure the tracking confidence. The measuring 
module was the Random Ferns Classifier used in TLD algorithm, and was further adjusted to 
Support Vector Machine classifier. The third confidence filter resembled a MOSSE without 
dense sampling and a cosine window on the features, and was conducted after translational 
detection. Yang et al. [13] proposed a long-tern tracking method. They introduced a spatial 
regularization component for learning of the classifier and used the Newton iteration to get 
maximizing response score. The confidence of the target with maximum response score was 
compared to train an on-line support vector machine classifier so that the target can be 
re-detected in the case of tracking failure. 

Tracking confidence reflects the tracking reliability and can be used to judge whether the 
target is lost. Generative model methods use similarity measure function as tracking 
confidence measure while discriminant model methods use the classification probability. 
Two indexes including the maximum response value and the response mode reflect the 
tracking confidence in correlation filtering methods. Wang et al. [14] used multimodal target 
detection with high-confidence updating strategy. High-confidence updating means that the 
model should be updated only when the tracking confidence is relatively high, which avoid 
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contamination of the model and increase the running speed. The high-confidence measure is 
defined as the combination of the response peak and the average Peak-to-Correlation Energy. 
In addition, the tracking confidence index includes the Peak to Sidelobe Ratio [3] in MOSSE. 
It is calculated from the correlation filter peak, the mean and standard deviation of the 
sidelobes outside the peak window. Lukezic et al. [15] introduced the channel and spatial 
reliability concepts in DCF tracking and combined the maximum response peak with the 
ratio between the second and first primary modes in the response graph to reflect the tracking 
reliability.  

This paper proposes an occlusion detection scheme and a scaling pool searching method to 
achieve anti-occlusion and scale adaptive object tracking in the basis of KCF. The main 
contributions of the work can be found: 1) Both object scale changes and occlusion are taken 
into considerations to extend the KCF to an anti-occlusion and scale adaptive tracker. 2) The 
proposed method achieves an appealing performance with regarding to the tracking success 
rate and accuracy in comparison with the start-of-the-art tracking algorithms. 

2. KCF tracking algorithm fundamentals 

2.1 Overview of KCF 

The basic idea of the KCF is to train a discriminant classifier in the current frame, and 
then uses it to detect the target in the next frame. The detected region and its derivations are 
then taken as new training samples to update the discriminant classifier. When training the 
discriminant classifier, the target region is selected as the positive sample, the regions around 
the target obtained by the cyclic shifts are taken as the negative samples. The multi-channel 
HOG feature is extracted from the samples for the classifier training. A Gaussian Kernel is 
used for the kernel correlation trick to solve for the ridge regression classifier. Fig. 1 shows 
the process of the classifier training and the target tracking of the KCF algorithm. The red 
dashed box in the left image is the initially detected target. The red solid box is the base 
sample generated from the target added with padding. The other boxes are the samples 
generated with the padding window cyclically shifted around. A classifier can be trained by 
using these samples. The trained classifier is then used to detect target position in the next 
frame (right image). Taking the predicted area, i.e., the red solid box (the same position as in 
the previous frame) as the base patch, cyclically shifting the base patch and using the 
classifier to calculate the responses for each shift, the box with the maximum response is 
taken as the new target position, i.e., the yellow box. The relative translation between the 
yellow box and the red box is the translation of the target. Repeat the training process to 
update the classifier in the new frame for the subsequent detection. With the continuous 
updating mechanism, the background changes have little effect on the tracking results. 
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Fig. 1. Process of classifier training and target tracking of the KCF algorithm 

 

2.2 Sample representation 

The training samples in the KCF are obtained by cyclically shifting the base sample. For 
notational simplicity, we consider single-channel one-dimensional signals. The results can be 
generalized to multichannel two-dimensional images in a straightforward way. Consider an 
one-dimension vector 𝑥 = [𝑥1, 𝑥2,······ 𝑥𝑛]𝑇 as the base sample representing a patch of the 

target. Use a cyclic shift operator 𝑃 =

⎣
⎢
⎢
⎢
⎡
0 0 0 ⋯ 1
1 0 0 ⋯ 0
0 1 0 ⋯ 0
⋮ ⋮ ⋱ ⋱ ⋮
0 0 ⋯ 1 0⎦

⎥
⎥
⎥
⎤
 to model one-dimensional 

translation of this vector. The product 𝑃𝑥 = [𝑥𝑛, 𝑥1,······ 𝑥𝑛−1]𝑇 shifts x by one element. 
Cyclic shift of x for n times, i.e. {𝑃𝑖𝑥   𝑖 = 1, …𝑛}, generates 𝑛 one-dimension vectors. 
Concatenating these vectors yields a matrix, called circulant matrix, which can be expressed as 

𝑋 = 𝐶(𝑥) = �

𝑥1 𝑥2 𝑥3 ⋯ 𝑥𝑛
𝑥𝑛 𝑥1 𝑥2 ⋯ 𝑥𝑛−1
⋮ ⋮ ⋮ ⋱ ⋮
𝑥2 𝑥3 𝑥4 ⋯ 𝑥1

�                               (1) 

   
The circulant matrix can be made diagonal by the Discrete Fourier Transfer (DFT) of all 

generated vectors. 

   X = Fdiag(x� ) FH                                              (2) 

where 𝐹 is the constant DFT matrix, 𝑥� denotes the DFT of the generated vectors, the hat ^ is 
the shorthand notation for the DFT of a vector. We have 𝑥� = 𝐹(𝑥) = √𝑛 𝐹𝑥. 𝐹𝐻 denotes 
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the complex conjugate transpose of F. By using the diagonal expressions with the circulant 
matrices, we also have  

𝑋𝐻 = 𝐹𝑑𝑖𝑎𝑔(𝑥�∗ )𝐹𝐻    

𝑋𝐻𝑋 = 𝐹𝑑𝑖𝑎𝑔(𝑥�∗ ⊙ 𝑥�  )𝐹𝐻          (3) 

where ⊙ denotes the element-wise product, and 𝑥�∗ denotes the complex-conjugate of 𝑥�, 
the star * is the operator for the complex-conjugate. The above steps summarize the general 
approach taken in diagonalizing expressions with circulant matrices. Operations on diagonal 
matrices are element-wise. 

 

2.3 Classifier determination 

The KCF algorithm uses a kernelized ridge regression classifier. Supposing that the 
training samples are 𝑥𝑖 and, the goal of classifier training is to find a linear ridge regression 
function 𝑓(𝑧) = 𝑤𝑇𝑧 to minimize the squared error over samples 𝑥𝑖 and their regression 
targets𝑦𝑖,    

       min∑ (f(xi) − yi)2 + λ||w||2n−1
i=0                                      (4) 

where 𝜆 is the regularization parameter to ensure the generalization performance of the 
classifier. The solution can be obtained in the following complex form 

 w = (XHX + λI)−1XHy                                            (5) 

where the data matrix X has one sample per row 𝑥𝑖, each element of y is a regression target 
𝑦𝑖, and I= FHF is an identity matrix. 𝑋𝐻represents the Hermitian transpose of complex 
conjugate of X.  

Applying Eq.3 recursively into Eq.5 generates Eq.6 as follows 

w� ∗ = x�⊙y�
x�∗⊙x�+λ

                                                     (6) 

where 𝑤�∗ is the complex-conjugate of the Fourier transform of w. The physical meaning of 
the operation is that 𝑤�  can be solved in Fourier domain where the equation becomes 
element-wise division. We can easily recover w in the spatial domain with the Inverse DFT. 
The element-wise product operation instead of matrix operation greatly improves the 
calculation efficiency.  
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Kernel trick is then applied to map the inputs of a linear problem to the non-linear kernel 
spaces so that inseparable in the low-dimensional linear space becomes separable in the 
kernel space. The kernelized version of the ridge regression function can be written as 

𝑓(𝑧) = 𝑤𝑇𝑧 = ∑ 𝑎𝑖𝑘(𝑧,𝑛
𝑖=1 𝑥𝑖)         (7) 

where 𝑎𝑖 is called the dual space coefficient. So the problem of solving for w is converted 
to find the optimal solution of 𝑎𝑖. For most commonly used kernel function, the circulant 
matrix trick an also be used, so 

   𝑎� = 𝑦�
𝑘� 𝑥𝑥+𝜆

                                                        (8) 

where 𝑘𝑥𝑥 is defined as kernel correlation of x with itself in the Fourier domain in ref. [5], 
𝑎 is the vector of coefficients 𝑎𝑖.  

The KCF adopts the Gaussian kernel which can be applied the circulant matrix trick as 
below: 

𝐾𝑥𝑥 , = 𝑒𝑥𝑝 �− 1
𝜎2
��|𝑥|�2 + �|𝑥,|�2 − 2𝐹−1(𝑥�∗ ⊙ 𝑥� ,)��                   (9) 

where 𝜎 is Gaussian kernel standard deviation. 

 

2.4 Fast detection 

The patch z at the same location in the next frame is treated as the base patch. The 
candidate patches to be tested are cyclic shifts of the base patch, i.e. zi = Piz. The 
kernel matrix of the detection is  

𝐾𝑧 = 𝐶(𝑘𝑥𝑧)           (10) 

where 𝑘𝑥𝑧 is the kernel correlation of z and the base sample x. Each element of 𝐾𝑧  is 
given by 𝑘(𝑃𝑖−1𝑧,𝑃𝑗−1𝑥).  

The regression function, i.e. response, for all candidate patches is calculated 
from Eq.8, that is. 

𝑓(𝑧) = (𝐾𝑧)𝑇𝑎            (11) 

Diagonalzing it yields 𝑓 (𝑧) = 𝑘�  𝑥𝑧 ⊙ 𝑎� , which contains responses for all candidate 
patches. The patch with the maximum response is the target area. 
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3. Improved Kernel Correlation Filter Tracker 

3.1 Scale invariance 

The scale change occurs in the process of object tracking. The traditional KCF algorithm 
uses a fixed model size for the classifier and does not have adaptive model scale updating 
mechanism. When the target shrinks, the classifier will learn a large number of background 
information. When the target expands (bigger than the model), the classifier will only trace 
the partial target. Both cases can cause the model drift and result in a track loss. 

A modification of the searching strategy has been made in this paper. Instead of searching 
for a target with a fixed sample size, we sample the target area with multiple scales, called 
scaling pool, and then resize it into the sample size to compare with the learnt model. The 
scale factor with the maximum filter response is the best target scaling and will be updated 
as the optimal scale to adjust the model size for the following tracking. By this scheme, scale 
invariance can be achieved in the tracking process. Fig. 2 shows the diagram of the method. 

 

 
Fig. 2. Target searching scheme with multiple scales 

 

The scaling pool method has also been used in Ref. [6] where seven scales with steps 
S = {0.980, 0.985, 0.99, 1.0, 1.005, 1.01, 1.015} were adopted for target searching. In order 
to maintain the tracking robustness without significant reduction in processing speed, we 
reduce the scaling number and increase the step size. Our experiments show that the scaling 
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pool of  S = {0.90, 0.95, 1.0, 1.05, 1.10}  gives a compromise between the tracking 
performance and the running speed. 

 

3.2 Occlusion detection 

The correlation filter response peak (Fmax) is normally used as the tracking confidence 
measure, which can be obtained by taking the maximum in Eq.11. The larger the value of 
Fmax, the better the tracking effect. 𝐹𝑚𝑎𝑥   can somehow indicate an occlusion case, but does 
not fully reflect the response oscillation since it is not always lower than the historical 
average peak when the target is obscured. Therefore, only using Fmax as judgement does not 
fully reflect whether the tracking target is occluded or not. In this work, we take both the 
correlation filter response peak and the average Peak-to-Correlation Energy (APCE) into 
consideration for determining whether the target is occluded. The APCE can be calculated 
from the response-map, detailed in Ref. [14], as follow,   

 APCE = |Fmax−Fmin |2

mean(∑ (Fw ,h−Fmin)2w ,h )
                                  (12) 

where 𝐹𝑚𝑎𝑥  is the response peak,  Fmin is the response minimum,  Fw,h is the response of 
the sample at position (w, h). This index can fully reflect the response oscillation. A sudden 
and sharp drop of the APCE indicates that the target is occluded.  

Fig. 3 is one of video sequences presented in the Benchmark50 database [16], showing a 
process of a target from partial occlusion to complete occlusion and then unobstructed. Fig. 4 
shows the corresponding Fmax and the APCE values of each frame. It can be seen that both  
Fmax and APCE has a sharp drop near the 74th frame where the target is obscured. At the 
100th frame where the target appears again, the both values get recovered to the average. In 
this work, only when both indexes are greater than a certain proportion of the mean response, 
the model will be updated. That is, when one of the two indexes drops below the threshold, 
model updating will be stopped. The proportion thresholds are set as 0.5 and 0.4 for 𝐹𝑚𝑎𝑥  
and the APCE respectively. 
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Fig. 3. 66th, 74th and 83th frame of an occlusion case 

 
Fig. 4. 𝐹𝑚𝑎𝑥and APCE values of each frame in the video equence of Fig. 3 
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3.3 Model updating 

In the KCF algorithm, the model coefficient is linearly interpolated with 

𝛼 = (1− 𝛽)𝛼𝑝𝑟𝑒 + 𝛽𝛼𝑥 ,                                     (13) 

where α, 𝛼𝑝𝑟𝑒, and 𝛼𝑥 ,are the model coefficients obtained from the training samples in the 
next, current and previous frame respectively,𝛽 is a constant. This interpolation is to avoid 
the model from changing drastically. However, once the target is occluded for several frames, 
the model may be completely contaminated and therefore may not be able to recover. For 
anti- occlusion tracker, 𝛽 should not be a fixed value. Instead, we take 

𝛽 = �0.012,             𝑖𝑛 𝑡ℎ𝑒 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑛𝑜𝑛 − 𝑜𝑐𝑐𝑙𝑢𝑠𝑖𝑜𝑛 
  0,                   𝑖𝑛 𝑡ℎ𝑒 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑜𝑐𝑐𝑙𝑢𝑠𝑖𝑜𝑛              

�     (14) 

This setting is to stop the model updating when the target is obscured.  

Occlusion is caused by horizontal movement. In the cases of occlusion, the target only 
moves in horizontal direction and does not move in the longitudinal direction, thus the target 
size will not change. Therefore, once occlusion is detected, scaling updating must also be 
stopped. This will avoid model drift and track loss drift caused by scale updating. 

 

3.4 Algorithm flow 

By incorporating the scaling pool searching and occlusion detection mechanism into the 
traditional KCF tracking algorithm, the improved kernel-related filter algorithm is as 
follows: 

Anti-occlusion and Scale Adaptive Kernel Correlation Filter Tracking Algorithm 

1．Parameter initialization  
2．Read the i th frame of the image sequence 
3．if (i=0) Use the first frame and the bounding box to initialize the tracker 
4．else      
5．   The filter response values f for each sample are calculated based on the current frame 
6．   Calculate the tracking confidence index 𝐹𝑚𝑎𝑥 and the APCE, and the mean response 𝑓̅ 
7.     if Fmax>0.5*𝑓̅ && the APCE> 0.4*𝑓̅ 
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4．Experiments and Results 

4.1 Experimental conditions and evaluation index 

Experiments are conducted in a PC with 2.90GHZ Intel® Dual Core i5 processor and 
8GB of RAM. The traditional KCF parameters remain unchanged. The padding window is 2.5 
times of the target. The Gaussian kernel standard deviation σ is 0.6. The linear interpolation 
factor 𝛽  is 0.012. The regularization parameter 𝜆  is 0.0001. The scaling pool is  S =
{0.90, 0.95, 1.0, 1.05, 1.10}. 

The evaluation index, including the center location error (CLE), overlap precision (OP) 
and Frame Per Second (FPS), are used to evaluate the tracking performance of the proposed 
method. CLE is the Euclidean distance between the centers of tracking result and the manually 
marked ground truth. Tracking is considered successful when CLE is less than a threshold (20 
pixels). OP, also called tracking score, is defined as the ratio of the intersection and the union 
of the ground truth bounding box 𝐵𝑡  and the tracked bounding box 𝐵𝑎.  

 score = area(Bt⋂Ba)
area(Bt⋃Ba)

∈ [0，1]                                          (15) 

When the score is greater than a given threshold (0.5), the tracking is regarded as 
successful. OP actually reflects the extent of the overlap between the tracked results and the 
ground truth, i.e. tracking accuracy. 

4.2 Comparison with the KCF tracker 

 Experiments have been conducted on OTB Benchmark50 image sequences, a public video 
database presented in Ref. [16]. The OTB database, containing the image sequences of 50 
scenarios, provides a benchmark platform for evaluation and comparison of different tracking 
algorithms. The images in the OTB database are annotated with the ground truth of the target 
position. Table 1 lists the tracking success rate in terms of CLE and OP with a comparison of 

8.         Use the scale pool searching to find the best target scale value 𝑆𝑙 
9.         Set β= 0.012 to update the classifier model in terms of the size and the coefficients 

𝛼 = (1− 𝛽)𝛼𝑝𝑟𝑒 + 𝛽𝛼𝑥 , 

10.        Follow steps 8 and 9 to update the tracker and the target area 
11.     else (i.e. occlusion is detected) 
12.     Stop the scale updating, set β as zero, stop updating the classifier model 
13．Return to step 2    
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the proposed method and the traditional KCF algorithm [5]. Six scenarios are selected from 
the OTB video database, including obscured objects (Jogging, Women), scale changes 
(CarScale), fast-moving (Car4), light changes (BlueCar2), and rotate (Dog).  
It can be seen that our method has a significant improvement with regard to CLE and OP in 
Jogging and Women scenarios where the target is sometimes occluded. For Jogging scenario, 
the CLE is increased from 23.13% to 99.02%; OP from 22.48% to 82.08%. For Women 
scenario, the CLE is increased from 47.91% to 92.29%; OP from 22.48% to 82.08%.  
In the cases of scale change (CarScale) and fast moving (Car4), our method is improved 
significantly with regard to OP. For CarScale scenario, the OP is increased from 44.84% to 
83.73%. For Car4 scenario, the OP is increased from 38.24% to 92.97%. These results 
indicate that our scale invariance and the classifier model updating mechanism take significant 
effect in the tracking process.  
In the cases of light changes (BlueCar2) and rotate (Dog), our algorithm still retains the 
efficiency of the KCF algorithm. For all scenarios, the FPS has dropped slightly due to the 
increased complexity of the algorithm but it still guarantees a real-time traceability. 

Table 1. Comparison of tracking rate of our method and the KCF using different evaluation 
indexes for multiple scenarios 

Video sequences (scenarios)     Evaluation index          KCF[5]              Ours 

Jogging                       CLE                  23.13%              99.02% 
  (obscured objects)              OP                   22.48%              82.08% 
                                FPS                  32                   21 

Women                       CLE                  47.91%               92.29% 
  (obscured objects)              OP                   37.52%               61.14% 
                                FPS                  35                   28 

CarScale                      CLE                  72.6%                76.98% 
  (scale changes)                 OP                   44.84%               83.73% 
                                FPS                  32                   20 

Car4                          CLE                  97.27%               100% 
  (fast-moving)                   OP                   38.24%               92.97% 
                                FPS                  32                    21 

BlueCar2                      CLE                  99.65%               99.83% 
  (light changes)                  OP                   94.70%               92.99% 
                                FPS                  21                    16 

Dog                          CLE                  100%                 97.64% 
  (rotation)                      OP                   13.39%               29.13% 
                                FPS                  32                    21 
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Fig. 5 shows an example for the comparison of the tracking process of our tracker (red) and 
the KCF tracker (green) in the case of occlusion (Jogging, frame 60-100). Two trackers work 
well until 68th frame where the left pedestrian is partially obscured. At 74th frame where the 
left pedestrian is completely obscured, the KCF classifier model is contaminated, resulting in 
the track loss from 74th to 100th frame. Our tracker stops the model updating at 74th frame 
once the occlusion has been detected by using the method presented in section 3.2. The 
classifier model retains until the target occurs again at 87th frame. The tracking on the left 
pedestrian get recovered from the 87th frame to 100th frame. These results indicate that our 
occlusion detection method takes significant effect in the tracking process. 
 
Fig. 6 shows an example for the comparison of the tracking process of our tracker (red) and 
the KCF tracker (green) in the case of scale change (CarScale, frame 80-184). In this scenario, 
the vehicle moves close to the camera with a significant scale change. The traditional KCF 
algorithm does not have scale updating, thus the size of the green box (KCF tracker) does not 
change as the target is getting bigger. The KCF tracking will fail from 161th frame in terms 
of overlap precision (OP score > 0.5). Compared with the KCF tracker, our method has an 
adaptive scale updating mechanism. Therefore, it can be seen from the figure that the red box 
(our tracker) is getting bigger as the target is getting bigger. Our tracker can successfully 
track the target until frame 184th, indicating the better tracking accuracy (OP). These results 
indicate that our scale pooling searching strategy and model updating mechanism take 
significant effect in the tracking process. 

  
(a)                                   (b)                                      (c) 
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      Ours    

  KCF 
(d)                                   (e) 

Fig. 5. Comparison of tracking results in the case of occlusion (Jogging) 

   

         (a)                                 (b)                                      (c) 

     Ours      

KCF 
(d)                                (e) 

Fig. 6.  Comparison of tracking results in the case of scale change (CarScale) 
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4.3 Comparison with other trackers 

Our tracker is also compared with other tracking algorithms including SAMF [6], DSST 
[8], STRUCK [1] and TLD [2]. The experiments were conducted on all fifty image sequences 
provided in the OTB database by using the CLE as the evaluation index with a threshold of 20 
pixels. These 50 sequences include scenarios such as occlusion, scale change, lighting changes, 
rotation and fast moving.  

Table 2 shows the tracking successful rate of different trackers. SAMF and DSST are also 
based on KCF but they only handle scale changes and do not have occlusion detection 
mechanism. Their tracking rates are 77.4% and 74.3% respectively. Our method outperforms 
these two methods since our method exploits the properties of the conventional KCF and takes 
both scale change and occlusion into considerations. Compared with the traditional KCF 
algorithm, the tracking rate of our method is improved by 8.1%. Compared with the classical 
STRUCK and TLD methods, the tracking rate of our method is improved significantly.  

Table 2. Comparison of tracking rate of different trackers using CLE as evaluation index for 

all OTB-50 image sequences 
SV(scale variation)             OCC(occlusion)                 Mean OP 

Ours                  Yes                        Yes                               81.9% 
SAMF[6]               Yes                        No                                 77.4% 
DSST[8]               Yes                         No                              74.3% 
KCF[5]                No                       No                               73.2% 
STRUCK[1]            Yes                      Yes                              65.6% 
TLD[2]                Yes                        Yes                               60.8% 

5．Conclusion 

Aiming at the problems that the conventional KCF tracking algorithm has a poor performance 
in handling scale invariance and occlusion, this paper proposes an occlusion detection scheme 
and a scaling pool method to achieve anti-occlusion and scale adaptive object tracking. The 
searching scheme in the KCF is modified. Instead of searching for a target with a fixed sample 
size, the target area is searched with multiple scales and then resized into the sample size to 
compare with the learnt model. The scale factor with the maximum filter response is the best 
target scaling and is also updated as the optimal scale for the following tracking. The 
correlation filter response peak is combined with the average Peak-to- Correlation Energy 
(APCE) as an occlusion index to determine whether the target is occluded. Once occlusion is 
detected, the model updating and scale updating are stopped. The proposed method is 
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compared with other state-of-the-art tracking algorithms by using the OTB benchmark video 
sequences. Experimental results show the proposed method outperforms other methods, can 
effectively improve the tracking success rate and tracking accuracy in the cases of scale 
changes and occlusion, and ensure a real-time performance. 
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