Browse > Article
http://dx.doi.org/10.3807/KJOP.2018.29.4.159

Polarization-maintained Single-mode 400-W Yb-doped Fiber Laser with 2.5-GHz Linewidth from a 3-stage MOPA System  

Park, Young Ho (Hanwha Systems)
Youn, Young Seok (Hanwha Systems)
Jung, Min Wan (Hanwha)
Jun, Changsu (Advanced Photonics Research Institute, GIST)
Yu, Bong-Ahn (Advanced Photonics Research Institute, GIST)
Shin, Woojin (Advanced Photonics Research Institute, GIST)
Publication Information
Korean Journal of Optics and Photonics / v.29, no.4, 2018 , pp. 159-165 More about this Journal
Abstract
In this paper, we report on the high power amplification of a narrow-linewidth Yb-doped polarization-maintained (PM) fiber laser in a 3-stage, all-fiber master oscillator power amplifier (MOPA) system. The linearly polarized single-mode output power was 400 W with an 85% slope efficiency, with a linewidth of 2.5 GHz (full width at half maximum). Furthermore, mitigation of mode instability (MI) has been demonstrated by tightly coiling the gain fiber to a diameter of 11 cm. In addition, methods for higher power scaling are discussed.
Keywords
Stimulated Brillouin scattering; Mode instability; Fiber amplifier;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, J. Limpert, R. Eberhardt, and A. Tunnermann, "1 kW narrow-linewidth fiber amplifier for spectral beam combining," Presented at the Adv. Solid State Photon, Nara, Japan, 2008, Paper WA6.
2 G. D. Goodno, S. J. McNaught, J. E. Rothenberg, T. S. McComb, P. A. Thielen, M. G. Wickham, and M. E. Weber, "Active phase and polarization locking of a 1.4 kW fiber amplifier," Opt. Lett. 35, 1542-1544 (2010).   DOI
3 J. P. Koplow. D. A. V. Kliner, and L. Goldberg, "Single-mode operation of a coiled multimode fiber amplifier," Opt. Lett. 23, 442-444 (2000).
4 K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, "Threshold power and fiber degradation induced modal instabilities in high power fiber amplifiers based on large mode area fibers," Proc. SPIE 8961, 8961R (2014).
5 R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, "Comparison of the threshold of thermal-induced mode instabilities in polarization-maintaining and non-polarization-maintaining active fibers," J. Opt. 18, 65501 (2016).   DOI
6 B. M. Anderson, A. Flores, and I. Dajani, "Filtered pseudo random modulated fiber amplifier with enhanced coherence and nonlinear suppression," Opt. Express 25, 17671-17682 (2017).   DOI
7 P. D. Dragic, J. Ballato, S. Morris, and T. Hawkins, "Pockels' coefficients of alumina in aluminosilicate optical fiber," J. Opt. Soc. Am. B 30, 244-250 (2013).   DOI
8 L. Zhang, J. Hu, J. Wang, and Y. Feng, "Stimulated-Brillouinscattering-suppressed high-power single-frequency polarizationmaintaining Raman fiber amplifier with longitudinally varied strain for laser guide star," Opt. Lett. 37, 4796-4798 (2012).   DOI
9 C. Zeringue, C. Vergien, and I. Dajani, "Pump-limited, 203 W, single-frequency monolithic fiber amplifier based on laser gain competition," Opt. Lett. 36, 618-620 (2011).   DOI
10 N. A. Naderi, A. Flores, B. M. Anderson, and I. Dajani, "Beam combinable kilowatt. All-fiber amplifier based on phase-modulated laser gain competition," Opt. Lett. 41, 3964-3967 (2016).   DOI
11 C. Robin, I. Dajani, and F. Chiragh, "Experimental studies of segmented acoustically tailored photonic crystal fiber amplifier with 494 W single-frequency output," Proc. SPIE 7914, 79140B (2011).
12 J. Edgecumbe, T. Ehrenreich, C. H. Wang, K. Farley, J. Galipeau, R. Leveille, D. Bjork, I. Majid, and K. Tankala, Solid State and Diode Laser Technical Review, 17 June 2010.
13 A. Flores, C. Robin, A. Lanari, and I. Dajani, "Pseudo-random binary sequence phase modulation for narrow linewidth kilowatt monolithic fiber amplifiers," Opt. Express 22, 17735-17744 (2014).   DOI
14 N. A. Naderi, I. Dajani, and A. Flores, "High-efficiency, kilowatt 1034 nm all-fiber amplifier operating at 11 pm linewidth," Opt. Lett. 41, 1018-1021 (2016).   DOI
15 L. Yingfan, L. Zhiwei, D. Yongkang, and L. Qiang, "Research on SBS suppression based on multi-frequency phase modulation," Chin. Opt. Lett. 7, 29-31 (2009).   DOI
16 J. Boggio, J. Marconi, and F. Frangnito, "Experimental and numerical investigation of the SBS-threshold increase in an optical fiber by applying strain distributions," J. Lightw. Technol. 23, 3808-3814 (2005).   DOI
17 D. Brown, M. Dennis, and W. Torruellas, "Improved phase modulation for SBS mitigation in kW-class fiber amplifiers," in Proc. SPIE Photonics West, San Francisco, California, 24 January 2011.
18 J. O. White, M. Harfouche, J. Edgecumbe, N. Satyan, G. Rakuljic, V. Jayaraman, C. Burner, and A. Yariv, "1.6 kW Yb fiber amplifier using chirped seed amplification for stimulated Brillouin scattering suppression," Appl. Opt. 56, B116-B122, (2017).   DOI
19 J. Hansryd, F. Dross, M. Westlund, P. Andrekson, and S. Knudsen, "Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution," J. Lightw. Technol. 19, 1691-1697 (2001).   DOI
20 C. Jauregui, H. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tunnermann, "Passive mitigation strategies for mode instabilities in high-power fiber laser system," Opt. Express 21, 19375-19386 (2013).   DOI
21 A. V. Smith and J. J. Smith, "Maximizing the mode stability threshold of a fiber amplifier," arXiv:1301.3489 [physics. optics] (2013).
22 H. J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tunnermann, "Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector," Opt. Express 21, 17285-17298 (2013).   DOI
23 R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, "1.4 kW allfiber narrow-linewidth polarization-maintained fiber amplifier," Proc. SPIE 9255, 92550B (2015).
24 D. Engin, W. Lu, M. Akbulut, B. McIntosh, H. Verdun, and S. Gupta, "1 kW cw Yb-fiber-amplifier with <0.5 GHz linewidth and near-diffraction limited beam quality, or coherent combining application," Proc. SPIE 7914, 791407 (2011).