DOI QR코드

DOI QR Code

Multi-kilowatt Single-mode Ytterbium-doped Large-core Fiber Laser

  • Jeong, Yoon-Chan (Optoelectronics Research Centre, University of Southampton) ;
  • Boyland, Alexander J. (Optoelectronics Research Centre, University of Southampton) ;
  • Sahu, Jayanta K. (Optoelectronics Research Centre, University of Southampton) ;
  • Chung, Seung-Hwan (Optoelectronics Research Centre, University of Southampton) ;
  • Nilsson, Johan (Optoelectronics Research Centre, University of Southampton) ;
  • Payne, David N. (Optoelectronics Research Centre, University of Southampton)
  • Received : 2009.11.09
  • Accepted : 2009.11.23
  • Published : 2009.12.25

Abstract

We have demonstrated a highly efficient cladding-pumped ytterbium-doped fiber laser, generating $>$2.1 kW of continuous-wave output power at 1.1 μm with 74% slope efficiency with respect to launched pump power. The beam quality factor ($M^2$) was better than 1.2. The maximum output power was only limited by available pump power, showing no evidence of roll-over even at the highest output power. We present data on how the beam quality depends on the fiber parameter, based on our current and past fiber laser developments. We also discuss the ultimate power-capability of our fiber in terms of thermal management, Raman nonlinear scattering, and material damage, and estimate it to 10 kW.

Keywords

References

  1. Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, 'Ytterbiumdoped large-core fiber laser with 1.36 kW continuouswave output power,' Opt. Exp. 12, 6088-6092 (2004) https://doi.org/10.1364/OPEX.12.006088
  2. G. Bonati, H. Voelckel, U. Krause, A. Tunnermann, J. Limpert, A. Liem, T. Schreiber, S. Nolte, and H. Zellmer, '1.53 kW from a single Yb-doped photonic crystal fiber laser,' Late Breaking Developments Session 5709-2a, Photonics West 2005
  3. Information available from http://www.ipgphotonics.com
  4. I.-B. Sohn, Y.-C. Noh, Y.-S. Kim, D.-K. Ko, and J. Lee, 'Laser ablation of polypropylene films using nanosecond, picosecond, and femtosecond laser,' J. Opt. Soc. Korea 12, 38-41 (2008) https://doi.org/10.3807/JOSK.2008.12.1.038
  5. Y. Izawa, N. Miyanaga, J. Kawanaka, and K. Yamakawa, 'High power lasers and their new applications,' J. Opt. Soc. Korea 12, 178-185 (2008) https://doi.org/10.3807/JOSK.2008.12.3.178
  6. S. Yoo, C. Basu, A. J. Boyland, C. L. Sones, J. Nilsson, J. K. Sahu, and D. N. Payne, 'Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation,' Opt. Lett. 32, 1626-1628 (2007) https://doi.org/10.1364/OL.32.001626
  7. M. Engholm and L. Norin, 'Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass,' Opt. Exp. 16, 1260-1268 (2008) https://doi.org/10.1364/OE.16.001260
  8. J. Koponen, M. Soderlund, H. J. Hoffman, D. A. V. Kliner, J. P. Koplow, and M. Hotoleanu, 'Photodarkening rate in Yb-doped silica fibers,' Appl. Opt. 47, 1247-1256 (2008) https://doi.org/10.1364/AO.47.001247
  9. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, 'Power scaling of single-frequency ytterbium-doped fiber master oscillator power amplifier sources up to 500 W,' IEEE J. Select. Topics Quantum Electron. 13, 546-551 (2007) https://doi.org/10.1109/JSTQE.2007.896639
  10. P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, 'High average power high repetition rate picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,' IEEE Photon. Technol. Lett. 18, 1013-1014 (2006) https://doi.org/10.1109/LPT.2006.873486
  11. Y. Jeong, J. K. Sahu, R. B. Williams, D. J. Richardson, K. Furusawa, and J. Nilsson, 'Ytterbium-doped largecore fibre laser with 272 W output power,' Electron. Lett. 39, 977-978 (2003) https://doi.org/10.1049/el:20030655
  12. P. Laperle, C. Pare, H. Zheng, A. Croteau, and Y. Taillon, 'Yb-doped LMA triple-clad fiber laser,' in Proc. Photonics North 2006 (Quebec, Canada, Jun. 2006), paper FB-07-3-3 https://doi.org/10.1117/12.707712
  13. J. M. Fini, 'Bend-resistant design of conventional and microstructure fibers with very large mode area,' Opt. Exp. 14, 69-81 (2006) https://doi.org/10.1364/OPEX.14.000069
  14. J. K. Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, 'A 103W erbium/ytterbium co-doped large-core fiber laser,' Opt. Comm. 227, 159-163 (2003) https://doi.org/10.1016/j.optcom.2003.09.022
  15. Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, P. Dupriez, C. A. Codemard, S. Baek, D. N. Payne, R. Horley, J. A. Alvarez-Chavez, and P. W. Turner, 'Singlemode plane-polarized ytterbium-doped large-core fiber laser with 633 W continuous-wave output power,' Opt. Lett. 30, 955-957 (2005) https://doi.org/10.1364/OL.30.000955
  16. Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. Hickey, A. Harker, M. Lovelady, and A. Piper, 'Erbium:ytterbium codoped large-core fiber laser with 297-W continuouswave output power,' IEEE J. Select. Topics Quantum Electron. 13, 573-579 (2007) https://doi.org/10.1109/JSTQE.2007.897178
  17. Information available from http://www.newport.com
  18. D. C. Brown and H. J. Hoffman, 'Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,' IEEE J. Quantum Electron. 37, 207-217 (2001) https://doi.org/10.1109/3.903070
  19. Y. Wang, C.-Q. Xu, and H. Po, 'Thermal effects in kilowatt fiber lasers,' IEEE Photon. Technol. Lett. 16, 63-65 (2004) https://doi.org/10.1109/LPT.2003.818913
  20. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, New York, USA, 2001)
  21. A. A. Said, T. Xia, A. Dogariu, D. J. Hagan, M. J. Soileau, E. W. Van Stryland, and M. Mohebi, 'Measurement of the optical damage threshold in fused quartz,' Appl. Opt. 34, 3374-3376 (1995) https://doi.org/10.1364/AO.34.003374
  22. A. Smith, B. Do, and M. Soderlund, 'Deterministic nanosecond laser-induced breakdown thresholds in pure and $Yb^{3+$} doped fused silica,' Proc. SPIE 6453, 645317-645328 (2007) https://doi.org/10.1117/12.701399
  23. W. Koechner, Solid-state Laser Engineering, 5th ed. (Springer, Berlin, Germany, 1999)
  24. Y. Jeong, S. Baek, P. Dupriez, J.-N. Maran, J. K. Sahu, J. Nilsson, and B. Lee, 'Thermal characteristics of an end-pumped high-power ytterbium-sensitized erbium-doped fiber laser under natural convection,' Opt. Exp. 16, 19865-19871 (2008) https://doi.org/10.1364/OE.16.019865
  25. Y. Jeong, P. Dupriez, J. K. Sahu, J. Nilsson, D. Shen, W. A. Clarkson, and S. D. Jackson, 'Power-scaling of a 975-nm diode-pumped ytterbium sensitized thuliumdoped silica fibre laser operating in the 2 μm wavelength range,' Electron. Lett. 41, 173-174 (2005) https://doi.org/10.1049/el:20057534

Cited by

  1. Highly efficient Yb-doped silica fibers prepared by powder sinter technology vol.36, pp.9, 2011, https://doi.org/10.1364/OL.36.001557
  2. 1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks vol.20, pp.3, 2012, https://doi.org/10.1364/OE.20.003296
  3. A simple error control strategy using MATLAB BVP solvers for Yb3+-doped fiber lasers vol.126, pp.22, 2015, https://doi.org/10.1016/j.ijleo.2015.07.122
  4. Stimulated Brillouin scattering in Yb3+-doped dual-clad fiber lasers based on the temperature-dependent model vol.126, pp.1, 2015, https://doi.org/10.1016/j.ijleo.2014.08.103
  5. Novel shooting method with simple control strategy for fiber lasers vol.125, pp.8, 2014, https://doi.org/10.1016/j.ijleo.2013.09.077
  6. Experimental Investigation on Evolution of the Beam Quality in a 2-kW High Power Fiber Amplifier vol.26, pp.1, 2014, https://doi.org/10.1109/LPT.2013.2287195
  7. Theoretical study of power amplification in tapered fiber with multi-seed parallel injection vol.22, pp.11, 2013, https://doi.org/10.1088/1674-1056/22/11/114208
  8. Regenerative Er-doped Fiber Amplifier System for High-repetition-rate Optical Pulses vol.17, pp.5, 2013, https://doi.org/10.3807/JOSK.2013.17.5.357
  9. High power fiber lasers: current status and future perspectives [Invited] vol.27, pp.11, 2010, https://doi.org/10.1364/JOSAB.27.000B63
  10. 2.5 kW monolithic continuous wave (CW) near diffraction-limited fiber laser at 1080 nm vol.11, pp.10, 2014, https://doi.org/10.1088/1612-2011/11/10/105102
  11. Excellent initial guess functions for simple shooting method in Yb3+-doped fiber lasers vol.20, pp.4, 2014, https://doi.org/10.1016/j.yofte.2014.04.003
  12. Generating high-quality beam in a multimode LD-pumped all-fiber Raman laser vol.25, pp.11, 2017, https://doi.org/10.1364/OE.25.012581
  13. Novel configuration for an enhanced and compact all-fiber Faraday rotator with matched birefringence vol.25, pp.16, 2017, https://doi.org/10.1364/OE.25.018643
  14. High-power Q-switched rod-type photonic-crystal-fiber laser with linear polarization vol.60, pp.11, 2012, https://doi.org/10.3938/jkps.60.1872
  15. Scalable waveguide design for three-level operation in Neodymium doped fiber laser vol.24, pp.25, 2016, https://doi.org/10.1364/OE.24.028633
  16. Experimental study on tandem pumped fiber amplifier vol.44, pp.5, 2012, https://doi.org/10.1016/j.optlastec.2011.11.047
  17. 2kW CW near single mode all-fiber Ytterbium-doped fiber laser vol.126, pp.18, 2015, https://doi.org/10.1016/j.ijleo.2015.05.009
  18. Number sequence transition method based on MATLAB BVP solvers for high power Yb3+-doped fiber lasers vol.58, 2014, https://doi.org/10.1016/j.optlastec.2013.09.020
  19. 15  kW ytterbium-doped single-transverse-mode, linearly polarized monolithic fiber master oscillator power amplifier vol.54, pp.10, 2015, https://doi.org/10.1364/AO.54.002880
  20. Review on recent progress on Yb-doped fiber laser in a variety of oscillation spectral ranges vol.22, pp.5, 2012, https://doi.org/10.1134/S1054660X12050404
  21. 315  kW direct diode-pumped near diffraction-limited all-fiber-integrated fiber laser vol.54, pp.14, 2015, https://doi.org/10.1364/AO.54.004556
  22. Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers vol.19, pp.19, 2011, https://doi.org/10.1364/OE.19.018645
  23. Thin-disk laser-pumping of ytterbium-doped fiber laser vol.8, pp.12, 2011, https://doi.org/10.1002/lapl.201110083
  24. High Power Fiber Lasers: A Review vol.20, pp.5, 2014, https://doi.org/10.1109/JSTQE.2014.2321279
  25. Compact all-fiber optical Faraday components using 65-wt%-terbium–doped fiber with a record Verdet constant of −32 rad/(Tm) vol.18, pp.12, 2010, https://doi.org/10.1364/OE.18.012191
  26. Single mode 43 kW output power from a diode-pumped Yb-doped fiber amplifier vol.25, pp.13, 2017, https://doi.org/10.1364/OE.25.014892
  27. Shooting method with excellent initial guess functions for multipoint pumping Yb3+-doped fiber lasers vol.336, 2015, https://doi.org/10.1016/j.optcom.2014.09.074
  28. Rigorous Analysis on Ring-Doped-Core Fibers for Generating Cylindrical Vector Beams vol.18, pp.6, 2014, https://doi.org/10.3807/JOSK.2014.18.6.650
  29. Numerical Modeling and Optimization of Mid-Infrared Fluoride Glass Raman Fiber Lasers Pumped by $\hbox{Tm}^{3+}$-Doped Fiber Laser vol.5, pp.2, 2013, https://doi.org/10.1109/JPHOT.2012.2233726
  30. Influence of the fiber Bragg gratings with different reflective bandwidths in high power all-fiber laser oscillator vol.383, 2017, https://doi.org/10.1016/j.optcom.2016.09.020
  31. An approximate analytical model for temperature and power distribution in high-power Yb-doped double-clad fiber lasers vol.24, pp.11, 2014, https://doi.org/10.1088/1054-660X/24/11/115107
  32. High power tandem pumping fibre amplifier vol.20, pp.11, 2011, https://doi.org/10.1088/1674-1056/20/11/114208
  33. Adaptive shooting method for 4-point side-pumping high power Yb3+-doped double-clad fiber lasers vol.22, 2015, https://doi.org/10.1016/j.yofte.2014.12.001
  34. The Improved Power of the Central Lobe in the Beam Combination and High Power Output vol.29, pp.4, 2012, https://doi.org/10.1088/0256-307X/29/4/044204
  35. Ytterbium-doped double-cladding fiber with 35 kW output power, fabricated by chelate gas phase deposition technique vol.6, pp.4, 2016, https://doi.org/10.1364/OME.6.000979
  36. An optimized configuration of large mode field area PMMA photonic crystal fiber with low bending loss: a new approach vol.27, pp.2, 2016, https://doi.org/10.1007/s10854-015-3972-5
  37. 65  GHz linearly polarized kilowatt fiber amplifier based on active polarization control vol.56, pp.10, 2017, https://doi.org/10.1364/AO.56.002760
  38. Tuning and doubling of the generation frequency of fiber lasers vol.49, pp.4, 2013, https://doi.org/10.3103/S875669901304002X
  39. Experimental investigation of thermal effects and PCT on FBGs-based linearly polarized fiber laser performance vol.23, pp.8, 2015, https://doi.org/10.1364/OE.23.010506
  40. Emission from Mo-O charge-transfer state and Yb3+ emission in Eu3+ -doped and nondoped molybdates under UV excitation vol.100, pp.4, 2017, https://doi.org/10.1111/jace.14679
  41. Cladding-pumped erbium-doped multicore fiber amplifier vol.20, pp.18, 2012, https://doi.org/10.1364/OE.20.020191
  42. Dynamically stable Nd:YAG resonators with beam quality beyond the birefringence limit and pumping of a singly resonant optical parametric oscillator vol.43, pp.4, 2018, https://doi.org/10.1364/OL.43.000695
  43. Design and analysis of high-power segmented-core trench-assisted Yb-free erbium doped fiber amplifier vol.95, 2017, https://doi.org/10.1016/j.optlastec.2017.04.013
  44. Impact of photodarkening on the mode instability threshold vol.23, pp.12, 2015, https://doi.org/10.1364/OE.23.015265
  45. Comparison between threshold and sensitivity of stimulated Brillouin scattering at different pumping configurations in high-power double-clad fiber lasers vol.126, pp.24, 2015, https://doi.org/10.1016/j.ijleo.2015.09.150
  46. Leakage channel fibers with microstuctured cladding elements: A unique LMA platform vol.22, pp.7, 2014, https://doi.org/10.1364/OE.22.008574
  47. Novel bending-resistant design of two-layer low-index trench fiber with parabolic-profile core vol.22, pp.15, 2014, https://doi.org/10.1364/OE.22.018036
  48. Compact non-cascaded all-fiber Raman laser operating at 1174 nm vol.69, pp.1, 2016, https://doi.org/10.3938/jkps.69.31
  49. High power all-fiber amplifier with different seed power injection vol.24, pp.13, 2016, https://doi.org/10.1364/OE.24.014463
  50. Scalable Coherent Combining of Kilowatt Fiber Amplifiers Into a 2.4-kW Beam vol.20, pp.5, 2014, https://doi.org/10.1109/JSTQE.2013.2296771
  51. A Modified Bend-Resistant Multitrench Fiber With Two Gaps vol.33, pp.23, 2015, https://doi.org/10.1109/JLT.2015.2491651
  52. Femtosecond fiber CPA system based on picosecond master oscillator and power amplifier with CCC fiber vol.21, pp.5, 2013, https://doi.org/10.1364/OE.21.005338
  53. High power ytterbium-doped fiber lasers — fundamentals and applications vol.28, pp.12, 2014, https://doi.org/10.1142/S0217979214420090
  54. Decreasing effective reflectivity of the output coupler in the power scaling of fiber lasers vol.13, pp.3, 2016, https://doi.org/10.1088/1612-2011/13/3/035107
  55. Effect of Heat Treatment on Liquation Cracking in Continuous Fiber and Pulsed Nd:YAG Laser Welding of HASTELLOY X Alloy vol.48, pp.11, 2017, https://doi.org/10.1007/s11661-017-4300-x
  56. Current Status and Prospects of High-Power Fiber Laser Technology (Invited Paper) vol.27, pp.1, 2016, https://doi.org/10.3807/KJOP.2016.27.1.001
  57. Optimization of Yb3+-doped double-clad fiber lasers using a new approximate analytical solution vol.43, pp.1, 2011, https://doi.org/10.1016/j.optlastec.2010.05.004
  58. 1.1-kW Ytterbium Monolithic Fiber Laser With Assembled End-Pump Scheme to Couple High Brightness Single Emitters vol.23, pp.11, 2011, https://doi.org/10.1109/LPT.2011.2123879
  59. Efficient spectral control and tuning of a high-power narrow-linewidth Yb-doped fiber laser using a transversely chirped volume Bragg grating vol.21, pp.4, 2013, https://doi.org/10.1364/OE.21.004027
  60. Mitigating transverse mode instability in a single-end pumped all-fiber laser oscillator with a scaling power of up to 2 kW vol.18, pp.10, 2016, https://doi.org/10.1088/2040-8978/18/10/105803
  61. Investigation on Power Scalability of Diffraction-Limited Yb-Doped Fiber Lasers vol.20, pp.5, 2014, https://doi.org/10.1109/JSTQE.2014.2309056
  62. Simple and reliable light launch from a conventional single-mode fiber into a helical-core fiber through an adiabatically tapered splice vol.20, pp.23, 2012, https://doi.org/10.1364/OE.20.025562
  63. Experiment research on optical properties of all microstructure optical fiber laser vol.91, 2017, https://doi.org/10.1016/j.optlastec.2016.11.027
  64. High-power output of ytterbium-doped oxyorthosilicate lasers at 1018 nm vol.10, pp.1, 2013, https://doi.org/10.1088/1612-2011/10/1/015103
  65. Theoretical and experimental research on the ∼980-nm Yb-doped fiber laser vol.55, pp.7, 2016, https://doi.org/10.1117/1.OE.55.7.076113
  66. A 1150-W 1018-nm Fiber Laser Bidirectional Pumped by Wavelength-Stabilized Laser Diodes vol.24, pp.3, 2018, https://doi.org/10.1109/JSTQE.2018.2805801
  67. Radiation-balanced Yb:YAG disk laser vol.27, pp.2, 2019, https://doi.org/10.1364/OE.27.001392