• Title/Summary/Keyword: Optical Tomography

Search Result 302, Processing Time 0.039 seconds

Optical Coherence Tomography Based on a Continuous-wave Supercontinuum Seeded by Erbium-doped Fiber's Amplified Spontaneous Emission

  • Lee, Ju-Han;Jung, Eun-Joo;Kim, Chang-Seok
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.49-54
    • /
    • 2010
  • In this study, the use of a continuous-wave (CW) supercontinuum (SC) seeded by an erbium-doped fiber's amplified spontaneous emission (ASE) for optical-coherence tomography imaging is experimentally demonstrated. It was shown, by taking an in-depth image of a human tooth sample, that due to the smooth, flat spectrum and long-term stability of the proposed CW SC, it can be readily applied to the spectral-domain optical-coherence tomography system. The relative-intensity noise level and spectral bandwidth of the CW SC are also experimentally analyzed as a function of the ASE beam power.

Frequency-domain Diffuse Optical Tomography System Adopting Lock-in Amplifier (Lock-in 증폭기를 채용한 주파수영역 확산 광단층촬영 시스템)

  • Jun, Young-Sik;Baek, Woon-Sik
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.3
    • /
    • pp.134-140
    • /
    • 2011
  • In this paper, we developed a frequency-domain diffuse optical tomography(DOT) system for non-invasively imaging in vivo. The system uses near-infrared(NIR) light sources and detectors for which the photon propagation in human tissue is dominated by scattering rather than by absorption. We present the experimental reconstruction images of absorption and scattering coefficients using a liquid tissue phantom, and we obtain the location and shape of an anomaly which has different optical properties than the phantom.

Dense Spray Patternation using Optical Tomography

  • Cho, Seongho;Park, Gujeong;Yoon, Youngbin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.398-407
    • /
    • 2013
  • Optical tomography was used to measure the pattern of spray cross-section. The maximum-likelihood estimation (MLE) algorithm was used to reconstruct the spray cross-section from the measured transmission rate of the spray. A swirl-type injector was used to form an optically dense spray, and the test was carried out in a high-pressure chamber, to control the pressure condition of the test site. Before the experiment, the reliability of the MLE-based reconstruction algorithm was verified, by comparing it with a conventional filtered back projection reconstruction (FBP) method. The MLE algorithm showed superior reconstruction of the image. In the spray patternation experiment, the results of the optical tomography and optical line patternator, which uses Mie scattering signal information, were compared. While measuring the cross-section of optically dense spray, the intensity of the scattering signal had attenuated to an uncorrectable level, which led to incorrect spray pattern measurement by the optical line patternator. However, reliable results were obtained by optical tomography, under the same condition. Finally, the pattern of the optically dense spray was measured at various chamber pressures, of up to 3 MPa. As the chamber pressure increased, the hollow cone-shaped swirl spray shrank, and the attenuation coefficient value of the inner region increased.

Optical Coherence Tomography with Sinusoidal-Wave Drive an Optical Delay Line using Piezoelectrics Strecher (정현파로 구동되는 PZT 광경로 지연기를 이용한 광 간섭 단층촬영시스템)

  • Kim, Young-Kwan;Kim, Yong-Pyung
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.4
    • /
    • pp.274-279
    • /
    • 2007
  • We fabricated and characterized an optical delay line for optical coherence tomography (OCT). The delay line was composed of a cylindrical piezoelectric transduce (PZT) and a single mode optical fiber. The OCT system used a duplex scanning optical delay line which was symmetrically driven in the reference and sample arms. We showed that the sinusoidal-wave was superior to a triangular-wave for driving the optical delay line for scanning depth and repeatability.

Scientific and Engineering Applications of Full-field Swept-source Optical Coherence Tomography

  • Mehta, Dalip Singh;Anna, Tulsi;Shakher, Chandra
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.341-348
    • /
    • 2009
  • We report the development of full-field swept-source optical coherence tomography (SS-OCT) in the wavelength range of 815-870 nm using a unique combination of super-luminescent diode (SLD) as broad-band light source and acousto-optic tunable filter (AOTF) as a frequency-scanning device. Some new applications of full-field SS-OCT in forensic sciences and engineering materials have been demonstrated. Results of simultaneous topography and tomography of latent fingerprints, silicon microelectronic circuits and composite materials are presented. The main advantages of the present system are completely non-mechanical scanning, wide-field, compact and low-cost.

Optical Property Measurements of Optical Phantoms and Honan Tissues Using Frequency-Domain Diffuse Optical Tomography (주파수 영역 확산광 단층촬영 장치를 이용한 광 팬텀 및 인체조직의 광 계수 측정)

  • Ho, Dong-Su;Kwon, Ki-Woon;Eom, Gi-Yun;Lee, Seung-Duk;Kim, Beop-Min
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.229-234
    • /
    • 2007
  • Diffuse optical tomography (DOT) is a relatively new medical imaging modality which uses near infrared light to image large-sized tissues noninvasively. We constructed a frequency-domain DOT system to measure the optical properties of optical phantoms and human tissues. The FD-DOT uses the intensity-modulated infrared light source that illuminates the biological tissues. The phase shift and modulation changes at each detector site are separately processed to measure the optical properties. The absorption and scattering coefficients are separately estimated using inverse algorithms.