DOI QR코드

DOI QR Code

Scientific and Engineering Applications of Full-field Swept-source Optical Coherence Tomography

  • Mehta, Dalip Singh (Laser Applications and Holography Laboratory, Instrument Design Development Centre, Indian Institute of Technology Delhi) ;
  • Anna, Tulsi (Laser Applications and Holography Laboratory, Instrument Design Development Centre, Indian Institute of Technology Delhi) ;
  • Shakher, Chandra (Laser Applications and Holography Laboratory, Instrument Design Development Centre, Indian Institute of Technology Delhi)
  • Received : 2009.06.03
  • Accepted : 2009.08.31
  • Published : 2009.09.25

Abstract

We report the development of full-field swept-source optical coherence tomography (SS-OCT) in the wavelength range of 815-870 nm using a unique combination of super-luminescent diode (SLD) as broad-band light source and acousto-optic tunable filter (AOTF) as a frequency-scanning device. Some new applications of full-field SS-OCT in forensic sciences and engineering materials have been demonstrated. Results of simultaneous topography and tomography of latent fingerprints, silicon microelectronic circuits and composite materials are presented. The main advantages of the present system are completely non-mechanical scanning, wide-field, compact and low-cost.

Keywords

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, 'Optical coherence tomography,' Science 254, 1178-1181 (1991) https://doi.org/10.1126/science.1957169
  2. B. E. Bouma and G. J. Jearney, Handbook of Optical Coherence Tomography (Marcel Dekker, Inc., New York, USA, 2002)
  3. M. Brezinski, Optical Coherence Tomography: Principles and Applications (Academic Press, Burlington, MA, USA, 2006)
  4. P. H. Tomlins and R. K. Wang, 'Theory, developments and applications of optical coherence tomography,' J. Phys. D: Appl. Phys. 38, 2519-2535 (2005) https://doi.org/10.1088/0022-3727/38/15/002
  5. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, 'Performance of Fourier domain vs. time domain optical coherence tomography,' Opt. Exp. 11, 889-894 (2003) https://doi.org/10.1364/OE.11.000889
  6. J. Kim, C. Choi, and K. S. Soh 'Real spectral-domain optical coherence tomography using a superluminescent diode,' J. Korean Phys. Soc. 47, 375-379 (2005)
  7. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, 'Sensitivity advantage of swept-source and Fourierdomain optical coherence tomography,' Opt. Exp. 11, 2183-2189 (2003) https://doi.org/10.1364/OE.11.002183
  8. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, 'Optical coherence tomography using a frequency-tunable optical source,' Opt. Lett. 22, 340-342 (1997) https://doi.org/10.1364/OL.22.000340
  9. M. V. Sarunic, M. A Choma, C. Yang, and J. A. Izatt, 'Instantaneous complex conjugate resolved spectral and swept-source OCT using 3x3 fiber couplers,' Opt. Exp. 13, 957-967 (2005) https://doi.org/10.1364/OPEX.13.000957
  10. H. Lim, J. F. de Boer, B. H. Park, E. C. W. Lee, R. Yelin, and S. H. Yun, 'Optical frequency domain imaging with a rapidly sweep laser in the 815-870 nm range,' Opt. Exp. 14, 5937-5944 (2006) https://doi.org/10.1364/OE.14.005937
  11. M. V. Sarunic, S. Weinberg, and J. A. Izatt, 'Full-field swept-source phase microscopy,' Opt. Lett. 31, 1462-1464 (2006) https://doi.org/10.1364/OL.31.001462
  12. V. J. Srinivasan, R. Huber, I. Gorczynska, and J. G. Fujimoto, 'High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm,' Opt. Lett. 32, 361-363 (2007) https://doi.org/10.1364/OL.32.000361
  13. P. Blazkiewicz, M. Gourlay, J. R. Tucker, A. D. Rakic, and A. V. Zvyagin, 'Signal-to-noise ratio study of fullfield Fourier-domain optical coherence tomography,' Appl. Opt. 44, 7722-7729 (2005) https://doi.org/10.1364/AO.44.007722
  14. B. Povazay, A. Unterhuber, B. Hermann, and H. Sattmann, 'Full-field time-encoded frequency-domain optical coherence tomography,' Opt. Exp. 14, 7661-7669 (2006) https://doi.org/10.1364/OE.14.007661
  15. S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, 'Fingerprint detection using full-field swept-source optical coherence tomography,' App. Phys. Lett. 91, 181106-181108 (2007) https://doi.org/10.1063/1.2800823
  16. S. K. Dubey, D. S. Mehta, A. Anand, and C. Shakher, Simultaneous topography and tomography of latent ' fingerprints using full-field swept-source optical coherence tomography,' J. Opt. A: Pure Appl. Opt. 10, 015307-0153015 (2008) https://doi.org/10.1088/1464-4258/10/01/015307
  17. T. Anna, C. Shakher, and D. S. Mehta, 'Simultaneous tomography and topography of silicon integrated circuits using full-field swept-source optical coherence tomography,' J. Opt. A: Pure Appl. Opt. 11, 045501-045509(2009) https://doi.org/10.1088/1464-4258/11/4/045501
  18. E. Alarousu, L. Krehut, T. Prykari, and R. Myllyla, 'Study on the use of optical coherence tomography in measurements of paper properties,' Meas. Sci. Technol. 16, 1131-1138 (2005) https://doi.org/10.1088/0957-0233/16/5/012
  19. H. C. Lee and R. E. Gaensslen, Advances in Fingerprint Technology, 2nd ed. (CRC Press, Florida, USA, 2001)
  20. G. S. Sodhi and J. Kaur, 'Powder method for detecting latent fingerprints: a review,' Forensic Science International 120, 172-176 (2001) https://doi.org/10.1016/S0379-0738(00)00465-5
  21. F. Hussain, M. Hojjati, M. Okamoto, and R. E. Gorga, 'Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview,' J. Composite Mat. 40, 1511-1575 (2006) https://doi.org/10.1177/0021998306067321
  22. T. R. Vijayaram, S. Sulaiman, and A. M. S. Hamouda, 'Fabrication of fiber reinforced metal matrix composites by squeeze casting technology,' J. Mat. Proc. Tech. 178, 34-38 (2006) https://doi.org/10.1016/j.jmatprotec.2005.09.026
  23. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, 'High-resolution full-field optical coherence tomography with a linnik microscope,' Appl. Opt. 41, 805-812 (2002) https://doi.org/10.1364/AO.41.000805
  24. G . Moneron, A. C. Boccara, and A. Dubois, 'Stroboscopic ultrahigh-resolution full-field optical coherence tomography,' Opt. Lett. 30, 1351-1353 (2005) https://doi.org/10.1364/OL.30.001351

Cited by

  1. Electro-Optic Swept Source Based on AOTF for Wavenumber-Linear Interferometric Sensing and Imaging vol.4, pp.4, 2016, https://doi.org/10.3390/fib4020014
  2. Tomographic and volumetric reconstruction of composite materials using full-field swept-source optical coherence tomography vol.23, pp.5, 2012, https://doi.org/10.1088/0957-0233/23/5/055203
  3. A multifunctional contactless profilometer based on a tunable acousto-optical image filter vol.58, pp.1, 2015, https://doi.org/10.1134/S0020441215010133
  4. High-resolution corneal topography and tomography of fish eye using wide-field white light interference microscopy vol.102, pp.15, 2013, https://doi.org/10.1063/1.4802084
  5. Counterfeit Detection Using Characterization of Safety Feature on Banknote with Full-field Optical Coherence Tomography vol.14, pp.4, 2010, https://doi.org/10.3807/JOSK.2010.14.4.316