DOI QR코드

DOI QR Code

Optical Property Measurements of Optical Phantoms and Honan Tissues Using Frequency-Domain Diffuse Optical Tomography

주파수 영역 확산광 단층촬영 장치를 이용한 광 팬텀 및 인체조직의 광 계수 측정

  • Published : 2007.04.30

Abstract

Diffuse optical tomography (DOT) is a relatively new medical imaging modality which uses near infrared light to image large-sized tissues noninvasively. We constructed a frequency-domain DOT system to measure the optical properties of optical phantoms and human tissues. The FD-DOT uses the intensity-modulated infrared light source that illuminates the biological tissues. The phase shift and modulation changes at each detector site are separately processed to measure the optical properties. The absorption and scattering coefficients are separately estimated using inverse algorithms.

Keywords

References

  1. A. P. Gibson, J. C. Heben, and S. R. Arridge, 'Recent advances in diffuse optical imaging,' Physics in Medicine and Biology, vol. 50, pp.R1-R43, 2005 https://doi.org/10.1088/0031-9155/50/4/R01
  2. R. Choe, 'Diffuse optical tomography and spectroscopy of breast cancer and fetal brain,' Medical Physics, vol. 32, pp.3230-3238, 2005 https://doi.org/10.1118/1.2047847
  3. D. A. Boas. 'Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,' Neuroimage, vol. 23, pp.S275-S288, 2004 https://doi.org/10.1016/j.neuroimage.2004.07.011
  4. S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, and E. Gratton, 'Semi-infinite-geometry boundary problem for light highly scattering media: a frequency-domain study in the diffusion approximation,' J. Opt. Soc. Am., vol. 11, no. 10, pp.2128-2138, 1994 https://doi.org/10.1364/JOSAB.11.002128
  5. S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, and E. Gratton, 'Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode based technique,' Applied Optics, vol. 33, no. 22, 1994
  6. M. A. Franceschini and D. A. Boas, 'Noninvasive measurement of neuronal activity with near-infrared optical imaging,' Neuroimage, vol. 21, no.1, pp. 372-386, 2004 https://doi.org/10.1016/j.neuroimage.2003.09.040
  7. S. R. Arridge. 'Optical tomography in medical imaging,' Inverse Problems, vol. 15, pp. R41 - R93, 1999 https://doi.org/10.1088/0266-5611/15/2/022
  8. S. R. Arridge and W. R. B. Lionheart, 'Nonuniqueness in diffusion-based optical tomography,' Opt. Lett., vol. 23, no.11, pp. 882 - 884, 1998 https://doi.org/10.1364/OL.23.000882
  9. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, 'Imaging the body with diffuse optical tomography,' IEEE Signal Processing Magazine, vol. 18, pp. 57 - 75, 2001 https://doi.org/10.1109/79.962278
  10. D. A. Boas,M. A. O'Leary, B. Chance, and A. G. Yodh, 'Scattering and wavelength transduction of diffuse photon density waves,' Phys. Rev. E., vol. 47, no. 5, pp. R2999 - R3002, 1993
  11. D. A. Boas, M. A. O'Leary, B. Chance, and A. G. Yodh, 'Detection and characterization of optical inhomogeneities with diffuse photon density waves: A signal-to-noise analysis,' Appl. Opt., vol. 36, no.1, pp. 75-92, 1997 https://doi.org/10.1364/AO.36.000075
  12. B. A. Brooksby, H. Denghani, B. W. Pogue, and K. D. Paulsen, 'Near-infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: Algorithm development for reconstructing heterogeneities,' IEEE J. Quantum Electron., vol. 9, pp. 199 - 209, 2003 https://doi.org/10.1109/JSTQE.2003.813304
  13. B. Chance, 'Near-infrared images using continuous, phasemodulated, and pulsed light with quantitation of blood and blood oxygenation,' Ann. N. Y. Acad. Sci., vol. 838, pp. 19 - 45, 1998
  14. X. Cheng and D. A. Boas, 'Diffuse optical reflectance tomography with continuous-wave illumination,' Opt. Express, vol.3, pp.118-123, 1998 https://doi.org/10.1364/OE.3.000118