DOI QR코드

DOI QR Code

Frequency-domain Diffuse Optical Tomography System Adopting Lock-in Amplifier

Lock-in 증폭기를 채용한 주파수영역 확산 광단층촬영 시스템

  • Jun, Young-Sik (Department of Electronics and Radio Engineering, Kyung Hee University) ;
  • Baek, Woon-Sik (Department of Electronics and Radio Engineering, Kyung Hee University)
  • 전영식 (경희대학교 전자.전파공학과) ;
  • 백운식 (경희대학교 전자.전파공학과)
  • Received : 2010.11.26
  • Accepted : 2011.04.11
  • Published : 2011.06.25

Abstract

In this paper, we developed a frequency-domain diffuse optical tomography(DOT) system for non-invasively imaging in vivo. The system uses near-infrared(NIR) light sources and detectors for which the photon propagation in human tissue is dominated by scattering rather than by absorption. We present the experimental reconstruction images of absorption and scattering coefficients using a liquid tissue phantom, and we obtain the location and shape of an anomaly which has different optical properties than the phantom.

본 논문에서는 생체 내부를 비침습적으로 영상화하기 위한 방법으로 생체내에서의 빛의 전파가 흡수보다는 산란이 지배적으로 작용하는 근적외선(NIR, near-infrared) 영역의 레이저 광원 및 광 검출기를 이용하여 주파수영역(frequency-domain) 확산 광 단층촬영(DOT, diffuse optical tomography) 시스템을 구현하였으며, 생체조직을 모사한 액체 팬텀에 광학적 특성이 다른 이형성분(anomaly)을 삽입하여 실험적으로 흡수 및 산란 분포에 대한 영상을 복원함으로써 이형성분의 위치와 형태에 대한 정보를 획득하였다.

Keywords

References

  1. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, "Imaging the body with diffuse optical tomography," IEEE Sig. Proc. Mag. 18, 57-75 (2001). https://doi.org/10.1109/79.962278
  2. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, "Diffuse optics for tissue monitoring and tomography," Rep. Prog. Phys. 73, 076701 (2010). https://doi.org/10.1088/0034-4885/73/7/076701
  3. R. Choe, "Diffuse optical tomography and spectroscopy of breast cancer and fetal brain," Ph. D. Thesis, University of Pennsylvania, Pennsylvania (2005), pp. 81-87.
  4. Y. S. Jun and W. S. Baek, "Experimental reconstruction images of tissue phantom by diffuse optical tomography," J. Phys.: Conf. Ser. 224, 012146 (2010). https://doi.org/10.1088/1742-6596/224/1/012146
  5. K. D. Paulsen and H. Jiang, "Spatially varying optical property reconstruction using a finite element diffusion equation approximation," Med. Phys. 22, 691-701 (1995). https://doi.org/10.1118/1.597488
  6. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, "Optical image reconstruction using frequency-domain data: simulations and experiments," J. Opt. Soc. Am. A 13, 253-266 (1996). https://doi.org/10.1364/JOSAA.13.000253
  7. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: boundary and source conditions," Med. Phys. 22, 1779-1792 (1995). https://doi.org/10.1118/1.597634
  8. M. Schweiger and S. R. Arridge, "The finite element method for the propagation of light in scattering media:frequency domain case," Med. Phys. 24, 895-902 (1997). https://doi.org/10.1118/1.598008
  9. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, "Near infrared optical tomography using NIRFAST: algorithm for numerical model and image reconstruction," Commun. Numer. Meth. Engng. 25, 711-732 (2009). https://doi.org/10.1002/cnm.1162
  10. H. G. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, "Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm," Appl. Opt. 30, 4507-4514 (1991). https://doi.org/10.1364/AO.30.004507

Cited by

  1. Implementation of Multi-channel Concurrent Detection Homodyne Frequency-domain Diffuse Optical Imaging System vol.23, pp.1, 2012, https://doi.org/10.3807/KJOP.2012.23.1.023