Browse > Article
http://dx.doi.org/10.3807/JOSK.2009.13.3.341

Scientific and Engineering Applications of Full-field Swept-source Optical Coherence Tomography  

Mehta, Dalip Singh (Laser Applications and Holography Laboratory, Instrument Design Development Centre, Indian Institute of Technology Delhi)
Anna, Tulsi (Laser Applications and Holography Laboratory, Instrument Design Development Centre, Indian Institute of Technology Delhi)
Shakher, Chandra (Laser Applications and Holography Laboratory, Instrument Design Development Centre, Indian Institute of Technology Delhi)
Publication Information
Journal of the Optical Society of Korea / v.13, no.3, 2009 , pp. 341-348 More about this Journal
Abstract
We report the development of full-field swept-source optical coherence tomography (SS-OCT) in the wavelength range of 815-870 nm using a unique combination of super-luminescent diode (SLD) as broad-band light source and acousto-optic tunable filter (AOTF) as a frequency-scanning device. Some new applications of full-field SS-OCT in forensic sciences and engineering materials have been demonstrated. Results of simultaneous topography and tomography of latent fingerprints, silicon microelectronic circuits and composite materials are presented. The main advantages of the present system are completely non-mechanical scanning, wide-field, compact and low-cost.
Keywords
Optical coherence tomography; Instrumentation; Microscopy; Phase measurement and nondestructive testing;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, 'Optical coherence tomography using a frequency-tunable optical source,' Opt. Lett. 22, 340-342 (1997)   DOI
2 P. Blazkiewicz, M. Gourlay, J. R. Tucker, A. D. Rakic, and A. V. Zvyagin, 'Signal-to-noise ratio study of fullfield Fourier-domain optical coherence tomography,' Appl. Opt. 44, 7722-7729 (2005)   DOI
3 E. Alarousu, L. Krehut, T. Prykari, and R. Myllyla, 'Study on the use of optical coherence tomography in measurements of paper properties,' Meas. Sci. Technol. 16, 1131-1138 (2005)   DOI   ScienceOn
4 V. J. Srinivasan, R. Huber, I. Gorczynska, and J. G. Fujimoto, 'High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm,' Opt. Lett. 32, 361-363 (2007)   DOI   ScienceOn
5 M. Brezinski, Optical Coherence Tomography: Principles and Applications (Academic Press, Burlington, MA, USA, 2006)
6 S. K. Dubey, D. S. Mehta, A. Anand, and C. Shakher, Simultaneous topography and tomography of latent ' fingerprints using full-field swept-source optical coherence tomography,' J. Opt. A: Pure Appl. Opt. 10, 015307-0153015 (2008)   DOI   ScienceOn
7 F. Hussain, M. Hojjati, M. Okamoto, and R. E. Gorga, 'Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview,' J. Composite Mat. 40, 1511-1575 (2006)   DOI
8 M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, 'Sensitivity advantage of swept-source and Fourierdomain optical coherence tomography,' Opt. Exp. 11, 2183-2189 (2003)   DOI
9 D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, 'Optical coherence tomography,' Science 254, 1178-1181 (1991)   DOI
10 B. Povazay, A. Unterhuber, B. Hermann, and H. Sattmann, 'Full-field time-encoded frequency-domain optical coherence tomography,' Opt. Exp. 14, 7661-7669 (2006)   DOI
11 H. Lim, J. F. de Boer, B. H. Park, E. C. W. Lee, R. Yelin, and S. H. Yun, 'Optical frequency domain imaging with a rapidly sweep laser in the 815-870 nm range,' Opt. Exp. 14, 5937-5944 (2006)   DOI
12 R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, 'Performance of Fourier domain vs. time domain optical coherence tomography,' Opt. Exp. 11, 889-894 (2003)   DOI
13 J. Kim, C. Choi, and K. S. Soh 'Real spectral-domain optical coherence tomography using a superluminescent diode,' J. Korean Phys. Soc. 47, 375-379 (2005)
14 M. V. Sarunic, M. A Choma, C. Yang, and J. A. Izatt, 'Instantaneous complex conjugate resolved spectral and swept-source OCT using 3x3 fiber couplers,' Opt. Exp. 13, 957-967 (2005)   DOI
15 A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, 'High-resolution full-field optical coherence tomography with a linnik microscope,' Appl. Opt. 41, 805-812 (2002)   DOI
16 M. V. Sarunic, S. Weinberg, and J. A. Izatt, 'Full-field swept-source phase microscopy,' Opt. Lett. 31, 1462-1464 (2006)   DOI   ScienceOn
17 T. Anna, C. Shakher, and D. S. Mehta, 'Simultaneous tomography and topography of silicon integrated circuits using full-field swept-source optical coherence tomography,' J. Opt. A: Pure Appl. Opt. 11, 045501-045509(2009)   DOI   ScienceOn
18 H. C. Lee and R. E. Gaensslen, Advances in Fingerprint Technology, 2nd ed. (CRC Press, Florida, USA, 2001)
19 G. S. Sodhi and J. Kaur, 'Powder method for detecting latent fingerprints: a review,' Forensic Science International 120, 172-176 (2001)   DOI   ScienceOn
20 S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, 'Fingerprint detection using full-field swept-source optical coherence tomography,' App. Phys. Lett. 91, 181106-181108 (2007)   DOI   ScienceOn
21 T. R. Vijayaram, S. Sulaiman, and A. M. S. Hamouda, 'Fabrication of fiber reinforced metal matrix composites by squeeze casting technology,' J. Mat. Proc. Tech. 178, 34-38 (2006)   DOI   ScienceOn
22 B. E. Bouma and G. J. Jearney, Handbook of Optical Coherence Tomography (Marcel Dekker, Inc., New York, USA, 2002)
23 G . Moneron, A. C. Boccara, and A. Dubois, 'Stroboscopic ultrahigh-resolution full-field optical coherence tomography,' Opt. Lett. 30, 1351-1353 (2005)   DOI   ScienceOn
24 P. H. Tomlins and R. K. Wang, 'Theory, developments and applications of optical coherence tomography,' J. Phys. D: Appl. Phys. 38, 2519-2535 (2005)   DOI   ScienceOn